IJARP Impact Factor(2018): 4.908

International Journal of Advanced Research and Publications!

Implication Of SCN2A In The Prognosis Of Epilepsy: A Review Paper.

Volume 4 - Issue 1, January 2020 Edition
[Download Full Paper]

Author(s)
Rasha Elhassan, Professor Abasshar Hussein, Professor Abdalla Khwad, Dr Alsadig Gasoum, DR Sawsan Aldeef, Dr Ghada Elhassan, Dr Mohammed Saad
Keywords
SCN2A, Epilepsy, Prognosis, Outcome, Intractable epilepsy, Refractory epilepsy.
Abstract
Epilepsy is a chronic neurological disorder result in firing of the neurons due to channel defect or neuro-transmitters disturbance. Its clinical presentation is guided by the site of the abnormal neurons, and distribution pattern of the neuronal discharge. Treatment is mainly by antiepileptic drugs which have a good prognosis. However the remission and relapse is determined by some clinical and genetic factors. Many genes participate in the response to antiepileptic by affecting the metabolism, transporter, or the drug target. Sodium channel type alpha 2 gene (SCN2A) which is located in chromosome 2 encodes many antiepileptic drug receptors and incriminated in some refractory epilepsies. Science intractable epilepsy is disturbing life and consuming time early prediction of outcome will help in treating patient. More than that, using sodium channel blockers, or other modality of treatment such as ketogenic diet, deep vagus nerve stimulation, or surgery will improve outcome.
References
[1] Who regional office for the eastern mediterranean, Epilepsy in The Who Eastern Mediterranean Region, Cairo,(2010).
[2] H. K. Et, Mukhopadhyay.al , “Epilepsy and Its Management : A Review", Journal of Pharmascitech, 1(2), pp. 20–26,(2012).
[3] T. L. Et .Mac. al, “Epidemiology, Aetiology, and Clinical Management of Epilepsy in Asia: A Systematic Review”, lancet Neurology, 6(6), pp. 533–543,(2007). Doi: 10.1016/s1474-4422(07)70127-8.
[4] P. Camfield, And C. Camfield, “Incidence , Prevalence and Aetiology of Seizures and Epilepsy in Children”, Epileptic Discord, 17(2), pp. 117–123, (2015).
[5] B.Lee, “Classification of Epileptic Seizures and Epilepsy Syndromes”, Neurology Asia, 18(supplement 1), pp. 1–4,(2013).
[6] S.Robert Fisher , “The 2017 Ilae Classification of Seizures”,2017. Doi:10.1111/epi.13671.s
[7] P.A. Dekker, Epilepsy : A Manual for Medical and Clinical Officers in Africa. Revised ed. Geneva: who. (2002)
[8] M. Baulac, “Rational Conversion from Antiepileptic Polytherapy to Monotherapy”, Epileptic Disorders, 5(3), pp. 125–132,(2003).
[9] Y. G. Weber, And H. lerche, “Genetic Mechanisms in Idiopathic Epilepsies”, Developmental Medicine and Child Neurology, 50(9), pp. 648–654,(2008). Doi: 10.1111/j.1469-8749.2008.03058.x.
[10] O. K. Steinlein, “Genetic Mechanisms that Underlie Epilepsy”, Nature Reviews, 5(may), pp. 400–408, (2004). Doi: 10.1038/nrn1388.
[11] C. G. F. De et al Kovel, “Recurrent Microdeletions at 15q11.2 and 16p13.11 Predispose to Idiopathic Generalized Epilepsies”, Brain, 133, pp. 23–32,(2010). Doi: 10.1093/brain/awp262.
[12] Giulianoavanzini, massimo mantegazza, benedetta terragni, laura canafoglia, paolo scalmani, silvana franceschetti, “The Impact Of Genetic and Experimental Studies on Classification and Therapy of The Epilepsies, Neuroscience Letters http://dx.doi.org/10.101’ (no date). Elsevier ireland ltd. Doi: 10.1016/j.neulet.2017.05.026
[13] C. Marini, Et al. “Genetic Architecture of Idiopathic Generalized Epilepsy: Clinical Genetic Analysis of 55 Multiplex Families”, Epilepsia, 45(5), pp. 467–478,(2004). Doi: 10.1111/j.0013-9580.2004.46803.x.
[14] A. Pitkänen, ‘Therapeutic Approaches to Epileptogenesis-Hope on The Horizon’, Epilepsia, 51(s3), pp. 2–17,(2010). Doi: 10.1111/j.1528-1167.2010.02602.x.
[15] E. Rossignol. Et al, “Wonoep Appraisal : New Genetic Approaches to Study Epilepsy”, Epilepsia, 55(8), pp. 1170–1186,(2015). Doi: 10.1111/epi.12692.wonoep.
[16] S. Hwang, And S. Hirose, “Genetics of Temporal Lobe Epilepsy”, Brain and Development, 34(8), pp. 609–616,(2012). Doi: 10.1016/j.braindev.2011.10.008.
[17] N. Kasai. Et. al, “Genomic Structures of Scn2a and Scn3a - Candidate Genes for Deafness at The Dfna16 Locus”, Gene, 264, pp. 113–122, (2001).
[18] M. Mastrangelo, “Pediatric Neurology Novel Genes of Early-Onset Epileptic Encephalopathies : From Genotype to Phenotypes”, Pediatric Neurology, xxx, pp. 1–11,(2015). Doi: 10.1016/j.pediatrneurol.2015.04.001.
[19] S. K. G. Et al. Maier, “Distinct Subcellular Localization of Different Sodium Channel Alfa and Bita Subunits in Single Ventricular Myocytes from Mouse Heart”, Circulation, 109(11), pp. 1421–1427,(2004). Doi: 10.1161/01.cir.0000121421.61896.24.
[20] E. Westenbroek, A. catterall, And K. merrick, “Differential Subcellular Localization Of The Ri And R ,, Na + Channel Subtypes in Central Neurons Results”, Neuron, 3(december), pp. 695–704,(1989).
[21] Ingo helbig - http://epilepsygenetics.net/2015/08/11/scn2a-this-is-what-you-need-to-know-in-2015/
[22] S. R. Karia, “High Dose Phenobarbital Is Safe and Effective Treatment for Scn2a Related Epilepsy”, Clinical Neurophysiology, 129(2018), p. E8,(2017). Doi: 10.1016/j.clinph.2018.04.019.
[23] R. ET AL. Lakhan, “Differential Role of Sodium Gene Polymorphisms with Epilepsy and Multiple Drug Resistance in The North Indian Population”, British Journal of Clinical Pharmacology, 68(2), pp. 214–220, (2009). Doi: 10.1111/j.1365-2125.2009.03437.x.
[24] L. Nashef, N. hindocha, And A. makoff, “Risk Factors in Sudden Death in Epilepsy ( SUDEP ): The Quest for Mechanisms”, Epilepsia ,48(5), pp. 859–871,(2007). Doi: 10.1111/j.1528-1167.2007.01082.x.
[25] B. E. ET AL. Grinton, “Familial Neonatal Seizures in 36 Families : Clinical and Genetic Features Correlate with Outcome”, Epilepsia, 56(7), pp. 1071–1080, (2015). Doi: 10.1111/epi.13020.
[26] M. I.Shevell, D. B. sinclair, And K.metrakos, “Benign Familial Neonatal Seizures: Clinical and Electroencephalographic Characteristics”, Pediatric Neurology, 2(5), pp. 272–275, (1986). Doi: 10.1016/0887-8994(86)90018-4
[27] M.ito, “Seizure Phenotypes Of A Family With Missense Mutations In SCN2A”, Pediatric Neurology, 31(2), pp. 5–7, (2004). Doi: 10.1016/j.pediatrneurol.2004.02.013.
[28] D. ET AL. Matalon, “Confirming an Expanded Spectrum of Scn2a Mutations : A Case Series”, Epileptic Disord, 16(1), pp. 13–18,(2014).
[29] T. ET AL. Sugawara, “A Missense Mutation of The Na + Channel Alfa Ii Subunit Gene Na V 1 . 2 in A Patient with Febrile and Afebrile”, Pnas, 22(may), (2001).
[30] S. N.Misra, K. M. kahlig, And A. L. george, “Impaired Na V 1 . 2 Function and Reduced Cell Surface Expression in Benign Familial Neonatal-Infantile Seizures”,Epilepsia, 49(9), pp. 1535–1545,(2008). Doi: 10.1111/j.1528-1167.2008.01619.x.
[31] Y. ET AL. Liao, “Molecular Correlates of Age-Dependent Seizures in an Inherited Neonatal-Infantile Epilepsy”, Brain, 133, pp. 1403–1414,(2010). Doi: 10.1093/brain/awq057.
[32] H. G. ET AL. Brunner, “Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability”, The New England Journal of Medicine, 367(20), pp. 1921–1929, (2012). Doi: 10.1056/nejmoa1206524.
[33] Rapin, i., tuchman, r. And moshe, s. L. (2009) ‘convulsing toward the pathophysiology of autism’, brain and development, 31, pp. 95–103. Doi: 10.1016/j.braindev.2008.09.009.
[34] D.Turkdogan, G. thomas, And B. demirel, “Ketogenic Diet as A Successful Early Treatment Modality for Scn2a Mutation”. Brain and Development, 41(4), 389–391,(2019).
[35] K.Nakamura.al, “Clinical Spectrum of SCN2A Mutations Expanding to Ohtahara Syndrome”. Neurology, 81(11), 992–998,(2013). Doi: 10.1212/wnl.0b013e3182a43e57.
[36] Anna-lena baasch.al. “Exome Sequencing Identifies A De Novo Scn2a Mutation in A Patient with Intractable Seizures , Severe Intellectual Disability , Optic Atrophy , Muscular Hypotonia , and Brain Abnormalities”, Epilepsia, 55(4), pp. 25–29,(2014). Doi: 10.1111/epi.12554.
[37] P. ET AL. Kwan, “Multidrug Resistance in Epilepsy and Polymorphisms in The Voltage-Gated Sodium Channel Genes Scn1a, Scn2a, And Scn3a: Correlation among Phenotype, Genotype, and MRNA Expression”, Pharmacogenetics And Genomics, 18(11), pp. 989–998,(2008). Doi: 10.1097/fpc.0b013e3283117d67.
[38] A. T. Berg.al, “ Early-Life Epilepsies and The Emerging Role of Genetic Testing”. Jama Pediatrics, 171(9), 863,(2017).
[39] K. ET AL.Kamiya, “A Nonsense Mutation of The Sodium Channel Gene Scn2a in A Patient wth Intractable Epilepsy And Mental Decline”, The Journal of Neuroscience, 24(11), pp. 2690–2698, (2004). Doi: 10.1523/jneurosci.3089-03.2004.
[40] S. ET AL.Grover, “Genetic Profile of Patients with Epilepsy on First-Line Antiepileptic Drugs and Potential Directions for Personalized Treatment”, Pharmacogenomics, 11(7), pp. 927–941,(2010).
[41] I. ET .aL. Fricke-galindo1, “Allele and Genotype Frequencies of Genes Relevant to Anti-Epileptic Drug Therapy in Mexican-Mestizo Healthy Volunteers”, Pharmacogenomics, 10.2217/pg, (2016).
[42] Mishra, v. Et al, “Scn2a Deletion Improves Survival and Brain – Heart Dynamics in The Kcna1 -Null Mouse Model of Sudden Unexpected Death in Epilepsy ( SUDEP )”, Human Molecular Genetics, 26(11), pp. 2091–2103,(2017). Doi: 10.1093/hmg/ddx104.
[43] R.E.T. AL. dilena , “Efficacy of Sodium Channel Blockers in Scn2a Early Infantile Epileptic Encephalopathy”. Brain Dev (2016), http://dx.doi.org/10.1016/j.braindev.2016.10.015’ (no date). The japanese society of child neurology. Doi: 10.1016/j.braindev.2016.10.015.
[44] M. ET AL. Wolff, “Genetic and Phenotypic Heterogeneity Suggest Therapeutic Implications in Scn2a -Related Disorders”, Brain, 140(5), pp. 1316–1336, (2017). Doi: 10.1093/brain/awx054.
[45] l. A. Et al. Foster, “Infantile Epileptic Encephalopathy Associated with Scn2a Mutation Responsive to Oral Mexiletine”, Pediatric Neurology,(2016). Elsevier ltd. Doi: 10.1016/j.pediatrneurol.2016.10.008.
[46] S. J. sanders.al, “ Progress in understanding and treating scn2a -mediated disorders”. Trends in neurosciences, 41(7), 442–456,(2018). Doi: 10.1016/j.tins.2018.0’
[47] I. Ogiwara.al, “De Novo Mutations of Voltage-Gated Sodium Channel Alfa Ii Gene Scn2a in Intractable Epilepsies”, Neurology, 73, pp. 1046–1053, (2009).
[48] J. D. ET AL. Calhoun, “Cacna1g Is A Genetic Modifier of Epilepsy in A Mouse Model osf Dravet Syndrome”, Epilepsia, 58(8), pp. 111–115,(2017). Doi: 10.1111/epi.13811.
[49] Jun xianga, fang wenb, Y. Z. lingyun zhang, “Foxd3 Inhibits SCN2A Gene Transcription in Intractable Epilepsy Cell Models”, Experimental Neurology. Elsevier, 302(may 2017), pp. 14–21,(2018). Doi: 10.1016/j.expneurol.2017.12.012.