Numerical Simulation Of Oil Hydrocarbons And Heavy Metals Transport In Soil

Mahboba Rezai

Jounior Teaching Assistant, Faculty of Civil Engineering,
Department of Engineering, Ibn-e-Sina University, Kabul, Afghanistan
mahbouberezaiee@gmail.com

Abstract: Extensive entrance of oil hydrocarbons and heavy metals into subsurface soil and groundwater resources and characteristics of their propagation has become an important matter. The aim of this study is investigating the factors affecting the propagation of the contaminants in the soil using a numerical model called CTRAN/W. Hence a soil environment with 20 meters depth and 45 meters length analyzed. Boundary condition, initial condition and material properties in these simulations varied in every section. According to analyses, in coarse soils, the emission pattern is vertical and downward; however in fine soils horizontal distribution pattern is dominant. In other words generally in coarse soil the emission depth of soil pollution is more than emission length and in fine-grained the length of pollution is greater. With an increase in the density of contaminants, it has penetrated further into the aquifer and this makes it less spread on the surface of the aquifer. In both fine and coarse, the mainstream emission is vertical with an increase in transverse dispersion coefficient, the extent of pollution in the horizon increases. With an increase in longitudinal dispersion coefficient in both fine and coarse soil environment, a broader pattern of propagation is reached and other words in both horizontally and vertically, the emissions will increase. It was also observed that by increasing the ion exchange capacity, the arrival time of pollutants in the soil column increases and steep rise in emissions to reach its maximum is reduced. By increasing alkalinity, ion exchange capacity increases and therefore much more polluting soil adsorbs. The results can predict how and the extent of pollution and the importance of the effect of various parameters affecting the pollution used.

Keywords: Oil hydrocarbons, Heavy metals, Contaminants transport, Numerical modeling

1. Introduction

Nowadays soil pollution is an important environmental issue that should be taken into consideration. The human in his daily activities enters considerable amounts of various contaminants in water, soil and the air. Soil, water and air are considered major environmental components. The primary origins of the discharge of heavy metals in soil, industrial activities such as mining, metal smelting, electroplating industry, metalworking, fuel consumption, sewage discharge and urban and industrial waste as well as the use of pesticides, fertilizers and sewage sludge in agriculture. Most of the contaminations transfer happens when the contaminants reached the aquifer; it dissolves in water and along with underground water and contaminates the environment. Thus the importance of studying how to move and spread of pollution, as well as recycling and unsaturated zone to reach the aquifer is determined. Analysis of pollution movement in a permeable soil is of noticeable importance for an extensive spectrum of fields like engineering and bio medical treatments such as pollution removal, fuel uprooting, and destruction of atomic scraps. Recently, the intensive investigations have been handled to completely explain the movement procedure, transportation, and conversion and impacts of pollutants discharge. Numerous numerical models have been generated to consider for pollutants transportation in penetrable soil with various circumstances concerning groundwater migration, with special regard given to the movement process. Javadi et al. developed a mathematical model for analysis of movement of liquid and ventilation and pollutant transportation in unsaturated soils. S. A. Kartha et al. formed a model to examine the impact of stationary content of water in the time of occurrence of the pollutant at the bottom of an unsaturated soil column. Bandilla et al. offered a new developed approach named “Analytic Element Method (AEM)” which is an approach for analysis of macro scale underground pollutant transportation. It mixes the underground water with the Streamline Method, a split-operator, for representing radioactive transportation.
answer for contaminant transportation in river bank filtration which examines the impact of pumping and moving times. Some of researchers considered external condition on contaminant transport. Yong Yin et al. examines the function of temporal and spatial equating of discharge in the calibration of TCE contaminant transportation factors by a flux-based approach for determining corresponding permeability to improve mathematical equilibrium. Zi Wu et al. describe the effects of wetlands vegetation in which the single factor Alfalfa (α) could bring the longitudinal compression of the pollutant plume and the transformation of the form of the concentration profiles. Marzena Rachwal et al. investigated the utilization of mixed approaches for quantitative and qualitative evaluation of top-soils of forest which is most vulnerable to be destroyed by the industrial emissions. The research is structured as follows: in Section 2, Governing equations and solutions used in the software are presented. Modeling procedure has explained in section 3. Modeling results and software calibration has expressed in section 4.

2. Research Method

In this section governing equations and solutions has expressed. The general equation for pollution transportation is the one-dimensional advection-dispersion equality. The pollutant transportation equation can be obtained by analyzing the mass flux in an elemental amount of porous substance. The total pure mass flux over the element is:

\[M = \partial q / \partial x \ dx \]

In other word,

\[\partial M / \partial t \ dx = \partial q / \partial x \ dx \]

If we consider C as the concentration and M as the mass of dissolved contaminants:

\[C = M / V \]

And

\[M = C \Theta \]

Replacing M in equation 3 and dividing it by dx direct to:

\[\Theta (\partial C / \partial t + \partial q / \partial x) \]

The two main mechanisms in transportation are:

- Advection = \(v \Theta C = UC \)
- Dispersion = \(\Theta D \partial^2 C / \partial x^2 \)

Where: N = average linear velocity, \(\Theta \) = water content volumetric, D = hydrodynamic dispersion coefficient, C = concentration, U = D’Arcy velocity (specific discharge).

By replacing the mentioned two expressions into Eq. (5) drives to the fundamental transport equation:

\[\Theta (\partial C / \partial t + \partial q / \partial x) - \Theta D (\partial^2 C / \partial x^2) = \Theta D (\partial^2 C / \partial x^2) - UC \partial C / \partial x \]

3. Modeling procedure

3-1- CTRAN/W software

This software can model groundwater contaminant transportation queries. It is planned to employ the leakage flow velocities calculated because of water movement in the saturated and unsaturated soils. Simulating the migration of pollutant within the soil is a complicated kind of investigation. Pollutant transportation will be directed by adsorption, water movement, dispersion, diffusion, and radioactive decay. There are three primary boundary conditions for pollution transportation:

1) Detailed dispersive and advective flux (Cauchy).
2) Particularized concentration (Dirichlet); and,
3) Defined dispersive flux (Neumann)

When investigating the groundwater, we usually deal with this doubt by putting the exit line adequately distant from the region. We can use this method in transportation analysis, and the boundary can either be defined as a fixed intensity or fixed mass state.

3-3- Model Verification

In this section, we present analytical sample examples that have been used to compare the results of each of these cases and ultimately to determine the correct application and verification of the numerical model used in this research.

First validation example

This example was first presented by Bond and Wierenga in 1990, consists of a soil column with an 88.2 meters height. The experiments were carried out utilizing the 2 mm sample of covering soil. The composition of the exterior soil was 93% sand, 4% clay, and 3% silt. This soil stuff were completely mixed, wetted by the proper initial dilution to content of water equals to 0.034 kg/kg and bound in samples to an average dry bulk density of 1.73 mg/m³. The columns were moulded from clear acrylic sections, having an internal diameter of 20 mm and lengths varying from 5 to 25 mm. These columns allowed both breakthrough curves and resident concentration patterns to be marked.

The numerical model made by the GeoStudio software also has the boundary specifications and conditions described above. For example, the length of the dispersion coefficient is 0.2 m and the dispersion coefficient is perpendicular to the flow direction of 0.1 m. The results of solving this problem using two methods mentioned above and the results are compared with each other. It should be noted that the results shown in this figure are related to the relative concentration of the end point of the pathway of the pillars of the earth as compared to the initial concentration of pollution, which has been modified over time. As it is known, after about two days of contamination, the path has reached the end of the path, and little has increased concentration at this end point. In general, there is good coordination between the outputs of the two methods as it has been shown in Figure 1.

Figure 1: Comparison of the results of analytical solution and software solution CTRAN/W

A layout of the experimental container used for D-NAPL movement experiments is represented in Figure 2. The container had a depth of 15 cm, width of 150 cm, and height
of 82.5 cm. The container constructed of a main permeable material that was full of sands. The chambers were joined with the main permeable material through a stainless steel web that blocked migration of sands and allowed for pore fluid effluent and two boxes placed at both sides of the main permeable material.

Viewed measurement outcomes of oil movement tests without groundwater flow are presented in Figure 3. This figure shows photographs were captured 1, 4, and 7 h after injection. The contaminants moved from the injection point at the bottom of the trench box, as shown in Fig. 3a. The migration pattern is shown below and it is like a water drop which moves to spread as if a balloon is being inflated.

For proving the validity of the empirical outcomes and confirm the availability of mathematical investigation as a means for foretelling two-phase current in permeable soil, mathematical studies conducted utilizing the 2D finite difference code. This mathematical code is suitable to examine multi-phase current with a sequence equating. For the mathematical investigation, only the lower elevation portion of the bottom of the hollow case is regarded as the scientific field, as shown in Figure 4. The base edge of the container was impermeable to the liquid phase. The water pressure heads of both surfaces and the top were determined considering the initial circumstances, therewith allowing water flow through the sides.

Figure 2: The diagram of intermediate-scale container for oil movement tests.

Figure 3: Contaminants transport outcomes without groundwater flow, \(i = 0.000 \): (a) after 1 hour; (b) after 4 hours; and (c) after 7 hours.

Figure 4: The results of computational analysis done by kamon.

Figure 5: The results of Numerical simulation by CTRAN/W.
4. Modeling results
Here the effects of various parameters on the behavior and propagation pattern of pollution are discussed. In general, effects of different variables the permeability of the soil and the inflow discharge of pollutants in the soil site study to a depth of 20 meters and 45 meters length were analyzed. It is noteworthy that two parameters D and L, respectively are depth and length of pollution emission and measured subject to the point where contamination has spread to about 0.05 to 0.1 of initial concentration.

4.1- The effect of soil permeability on contaminant transport
For this analysis, two types of coarse and fine grained soil that contains different amounts of permeability of 10^-1 meters per second to 10^-9 meters per second is considered. The sensitivity analysis for a variety of pollutants inflow, coarse-grained soil at 1, 7 and 14 days and fine grained soils at 1, 3 and 6 months considered. The relative density is equal to 1.2 for all models and underground water table assumed 5 meters.

![Figure 6](image1.png)
Figure 6: Length variations of contamination in coarse soils according to changes in the permeability of the soil

![Figure 7](image2.png)
Figure 7: Depth variations of contamination in coarse soils according to changes in the permeability of the soil

![Figure 8](image3.png)
Figure 8: Length variations of contamination in fine soils according to changes in the permeability of the soil
According to presenting figures, in coarse aggregate soils for a considered time and specific pollutants discharge, the relationship between increasing pollution emission and increasing the permeability is relatively linear. But depth of contamination with increased permeability initially has a linear relationship and gradually increased and by approaching to permeability limit of sandy soil, the gravity has a greater impact than depth and the relationship between increase the depth of pollution by increasing the permeability of the soil become linear.

4-2- The effect of inflow discharge on the movement of contaminants
Here for the coarse soil, three permeability of 10^{-1}, 10^{-3} and 10^{-4} meters per second, and for the fine soil, three permeability of 10^{-5}, 10^{-7} and 10^{-9} meters per second were considered. For the coarse and fine grained soils, different contaminants discharges of 10^{-6} cubic meters per second to 10^{-4} cubic meters per second is considered.

4-3- The effect of alkalinity (PH) on the movement of heavy metals
In this simulation, the movement of major cations such as sodium, potassium, calcium and magnesium and three heavy metals include cadmium, zinc and lead in a soil column during 1 year under unsaturated flow is investigated. The top layer of soil contaminated by heavy metals and the underlying layer is without heavy metal. In this analysis, an acidic solution with three different alkalinity 3.5, 7 and 10 as the upstream boundary conditions is considered. Assuming that the ion exchange capacity of organic materials is 6 (meq) /g, the ion exchange capacity of soil column in different parts of 0.002 to 0.01 (mEq)/kilogram of soil is considered.
The effect of ion exchange capacity on the movement of heavy metals

In order to investigate on the effect of ion exchange capacity of the soil on heavy metals movement, 3 soil columns in a saturated environment and under constant hydraulic gradient was simulated with a height of 8 cm that Pb was impregnated its first 1 cm and 7 cm residue was no Pb. ion exchange capacity of the soil column were assumed to 0.001, 0.01, 0.05 and 0.1 and the Pb leachate were measured during a period of 100 days.

With the increase in ion exchange capacity, the maximum amount of Pb output is reduced. So that the ion exchange capacity of the soil with minimum, maximum Pb concentration output value of 85 (μmol) / (kg of water) and in the soil with the highest ion exchange capacity, the lowest concentration of Pb output (9μmol) / (kg of water) can be seen . In the fig.19 (a) and (b), the concentration of contaminants in the soil profile in 0/1, 10, 30, 60 and 180 days in two soils with different ion exchange capacity is shown.
ssemi-infinite permeable soil are derived using the Advection-Dispersion equation. Also, the specifications of one-dimensional leakage flow and the two-dimensional dispersive force are considered. Based on the fundamental solution of an instantaneous point contaminant source, the numerical investigations of the contaminant concentration in a porous medium subjected to a local contaminant source are derived by CTRAN/W.

6 References

