

Enumerating Of Star-Magic Coverings And Critical Sets

Anisatul Farida, Ratna Puspita Indah

Duta Bangsa University, Surakarta, Indonesia, PH-082237327726 anisatul_farida@udb.ac.id

> Duta Bangsa University, Surakarta, Indonesia ratna_puspita@udb.ac.id

Abstract: A simple graph G = (V, E) admits a H-magic covering if every edge in G belongs to a subgraph of G that isomorphic to H. Let $K_{m,n}$ be a complete bipartite graph on m and n vertices. Then graph G is a $K_{1,n-magic}$ if there is a total labeling $f: V \cup E \to \{1,2,...|V| + |E|\}$ such that for each subgraph G' = (V',E') of G isomorphic to $K_{1,n}$, there exists $\sum_{v \in V'} f(v) + \sum_{e \in E'} f(E) = m(f)$, where m(f) is a positif integer called magic sum. When $f(V) = \{1,2,...|V|\}$ we say that G is $K_{1,n-super magic}$ and we donete its supermagic-sum by s(f). The aim of this research is to list all possible H-magic covering on complete bipartite graph, where H is star magic, especially for n=3. After we list all possible star magic covering on complete biparite graph, we tke s one example of the labeling to find the critical sets. The method f this research is a literary study and we carried out the enumertion of all possible existing labeling. This research get a sum of 836 labeling which are not isomorphic. After we get list of all possible labeling, we choose a set of label vertices $\{1,3,4,5,7,10\}$ from which we establish some 28 critical set, 21 of them are of size 1 and the others are of size 2

Keywords: $K_{1,n} - magic covering$, critical sets, complete bipartite graph

1. INTRODUCTION

Graph labeling is an interesting topic in graph teory. Since Rosa [8] introduced the graceful labeling, various types of labelling studied and developed (see[3]). According to Wallis [11], the most common choices of the domain are the set of all vertices and edges (such labelings), the vertex-set alone (vertex-labelings), or the edge-set alone (edgelabelings). One type of graph labeling that much studied and developed is a magic labeling. The idea of labeling was first introduced by Sedlacek [10], then formulated by Kotzig and Rosa [9]. One of the magic labeling that frequently discussed is the edge-magic total labeling. From the development of edge-magic total labeling, Gutierrez dan Llado [4] has faound a magic covering. Most of the notations and terminologies in this paper follow that of Bondy and Murty [2]. Let G = (V, E) be a finite simple graph. Gutierrez and Llado [4] defined edge-covering of G as a family of different subgraph $H_1, ..., H_k$ such that any edge of E belongs to at least one subgraphs H_i , $1 \le i \le k$. Then, it is said that G admits an $(H_1, ..., H_k) - (edge)$ covering. If every H_i is isomorphic to a given graph H, then we say that G admits an H-covering. Suppose that G = (V, E) admits an H-covering. We say that bijective $f:V(G) \cup E(G) \to \{1,2,...,|V(G)|+|E(G)|\}$, is an H-magic labeling of G if there is a positive integer m(f), which we call magic-sum, such that for each subgraph H' = (V', E') of G

isomorphic to H we have, $f(H') = \sum_{v \in V'} f(v) + \sum_{v \in E'} f(e) = m(f)$

In this case we say that graph G is H-magic (Gutierrez and Llado [4]). Gutierrez and Llado [4] proved that a complete bipartite graph $K_{n,n}$ can be covered by $K_{1,n}$ – star magic covering using a magic square to label vertices and edges. Further magic covering had been investigated and developed by Llado and Moragas [5], T.K. Maryati et al [6], and

.A.A.G. Ngurah et al. [7]. This research is the expanding of the results of Guiterrez and Liado [4] to list all possible star magic coverings on complete bipartite graphs. The methodology applied considered different from [4]. After gained all possible labeling, we worked on finding some critical sets of a chosen labeling. Critical sets on a graph is a subset of labels and positions which when completed will produce in a single labeling (Baskoro[1]). Critical sets can be applied to security in communication systems.

2. BIPARTITE GRAPH K_{2,2}

Sum Label	Sum Ajaib		La	ibel V	ertex	Label Edge					
Verte x (T)	ે ሺ	A	b	С	d	e	f	90	h		
12	21	1	5	4	2	8	6	3	7		
15	22	7	1	2	6	4	3	8	5		
20	23	2	8	7	3	5	6	1	4		
24	24	8	4	5	7	1	3	6	2		

To bipartite graph $K_{2,2}$ as follows 4 are:

To ease writing, it make set of ctitical sized -1 and can write as : $Q11 = \{(7,7)\}$, $Q12 = \{(4,6)\}$, $Q13 = \{(4,3)\}$ and $Q14 = \{(8,2)\}$.

Then, there are 54 set of critical sized 2 with 4 of the first are Q21={_, 2,_,,1,_}, Q22={_,,_,,1,3,_}, Q23={1,_,4,_,,_,}, Q34={_, _,,_,,4,1,_}, that can wrote as ease as Q21={(2,2), (7,1)}, Q22={(6,1), (7,3)}, Q23={(1,1), (3,4)}, and Q24={(6,4), (7,1)},

If taken example set of critical Q24 as example, so:

International Journal of Advanced Research and Publications ISSN: 2456-9992

And

$$S = \{(1,1), (4,2), (6,8)\}$$
Or S = \{1, 0, 0, 2, 0, 8, 0, 0\}

So third participant in enumerating star magic to access savings account is with maked third any code which if it summed mod 9 can produce S as above

 $P1 = \{2, 3, 7, 5, 1, 1, 4, 0\}$ $P2 = \{4, 0, 2, 2, 3, 6, 1, 7\}$ $P3 = \{4, 6, 0, 4, 5, 1, 4, 2\}$

T	51	54	57	60	63	66	69	72	75
S(f)	57	58	59	60	61	52	63	64	65
Any labels	0	51	0	109	0	31	0	0	0

Some results of enumerating star magic of complete bipartite graph for T=30, s(f)=50

4	5	6	12	1	2	10	14	7	8	9	13	15	11	3
4	5	6	12	1	2	10	14	7	8	9	13	11	15	3
4	5	6	12	1	2	8	10	13	14	9	7	11	15	3

3. COMPLETE BIPARTITE GRAPH K3,3

For complete bipartite graph $K_{3,3}$ can be obtained enumerating star magic $K_{1,3}$ as follows:

T	21	24	27	30	33	36	39	42	45	48
S(f)	47	48	49	50	51	32	53	54	55	56
Any labels	0	0	0	31	0	109	0	51	0	77

4. COMPLETE BIPARTITE GRAPH K4.4

For complete bipartite graph $K_{4,4}$ can be obtained enumerating star magic $K_{1,4}$ as follows:

Т	40	48	56	64	72	80	88	96	104	112	120	128	136	144	152	160
S(f)	90	93	96	99	102	105	108	111	114	117	120	123	126	129	132	135
Any labels		On process														

Some of enumerating star magic on complete bipartite graph for T=48, s(f)=93

11	9	1	3	4	5	7	8	20	17	19	2	15	13	10	22	6	18	21	23	24	16	12	14
4	5	8	7	9	1	11	3	20	10	16	19	24	13	15	12	14	23	6	18	2	22	21	17

5. ILLUSTRATIONS

In this case , we search a – star magic covering on bipartite graph with T-30, s(f)-50, and s-90, and costruct its dual labeling. For T=30 we obtain 23 combinations of the set of label of vertices, to of which are $\{1,2,3,4,15\}$ and $\{1,2,3,4,8,12\}$. Here are the steps to get a star magic covering.

- [1] First, we determine the label of each vertex of the combination of label T, for example the set of the label of the vertices obtained is {1,2,3,4,8,12}
- [2] Second, we label each edge by labels not use by T, for example the label of edge are 5,6,7,9,10,11,13,14, and 15
- [3] Third, we interchange each label of edge, until we get a star magic covering . in the process of interchange the labels of edges we can obtain more than one labelling.
- [4] Next, we will search the dual labeling. For examples, the labeling with T=30, s(f)=50, s=90 has a dual labeling with T=66, s(f)=62, s=54.

REFERENCES

T=66, s(f)=62 and s=54

[1]. Baskoro, E.T, Critical set in edge-magic total labelings, J. Combin. Math Combin. Comput. 55(2005), 32-42.

[2] From a chosen set of label of vertices {1,3,4,5,7,,10} there are 28 critical sets, 21 of

them are of size 1 and the other are of size 2

Star magic covering on complete bipartite graph with

T=30, s(f)=50, and s=90 and its dual labeling with

- [2]. Bondy, J.A. and U.S.R Murty, Graph Theory with Applications, The Macmilliarn Press Ltd, London, 1976.
- [3]. Gallian, J.A, Dynamics Survey of Graph Labeling, Electron, J. Combi 14 (2010)#DS6
- [4]. Gutierrez, A. and A. Blado, Magic Coverings J. Combin. Comput, 55 (2005), 43-56.
- [5]. Blado , A. and J. Morages, Cycle-Magic Graphs, Discrete Mathematics. 23. (2007)
- [6]. Maryati, T.K.E.T. Baskoro and A.N.M Salman, Ph-Super magic Labelings of some Trees, J. Combin. Math Combin.Comput(2008), 197-204

6. CONCLUSION

The result obtained from the research that have been done are as follows.

[1] There are 836 non isomorphic –magic covering of T-21 to T-75

International Journal of Advanced Research and Publications ISSN: 2456-9992

- [7]. Ngurah, A.A.G.A.N.M Salman, and L. Susilowati, H-supermagic Labelings of Graphs, Discrete Mathematics (2010), 1293-1300.
- [8]. Rosa, A, On Certain Valuation of the Vertices of a graph, (International Symposium, Rome, July 1966)(1967), 349-355
- [9]. Rosa, A. and A. Kotzig, Magic Valuations of finite graphs, Canad, Math. Bull (1970), 451-456
- [10]. Sedlacek, J, Theory of Graphs and its Applications, House Szechoslavak Acad. Sci, Prague (1964), 163-164
- [11]. Wallis, W.D, Magic Graph, Birkhauser, Boston, Basel, Berlin. 2001.

AUTHOR PROFILE

<Author 1 Photo>

Author 1 received the magister degrees in Mathematics from Sebelas Maret University in 2013. During 2013-now, she stayed in Informatics Technique, Duta Bangsa University.