International Journal of Advanced Research and Publications (2456-9992)

High Quality Publications & World Wide Indexing!

Rheological Study And Prebiotic Potential Of Cereus Triangularis Cladodes Extract

Volume 4 - Issue 3, March 2020 Edition
[Download Full Paper]

Petera Benjamin, Delattre Cédric, Pierre Guillaume, Vial Christophe , Michaud Philippe, Fenoradosoa Taratra Andrée
arabinogalactan, Cereus triangularis, prebiotic, rheological.
Abstract: Cereus triangularis is a cactus belonging to the sub-family of Cactoideae. Its cladodes are used in food decoction as a traditional medicine in Madagascar.The chemical structure of polysaccharide extracted from its cladodes is a type I arabinogalactan with a high molecular weight.In this study we have investigated its physicochemical properties, the rheological properties and prebiotic property of the oligo- or polysaccharides cladodes of Cereus triangularis. The rheological properties of this galactan are characteristic of a pseudoplastic fluid with a weak gel behavior. Storage modulus (G′) and loss modulus (G″) of the polysaccharide in 0.5 M NaCl and KCl 0.5 M revealed the viscoelastic properties.Its enzymatic degradation using a fungal galactanase led to the production of oligomers and low molecular weight polysaccharides which have been successfully tested as prebiotics.
[1] E.S. Amin, O.M. Awad, M.M. El-Sayed, The mucilage of Opuntia ficus-indica Mill. Carbohydrate Research, vol.15, pp. 159−161, 1970.

[2] D. McGarvie, and H. Parolis, The mucilage of Opuntiaficus-indica.Carbohydrate Research, vol. 69, no.1, pp. 171−179, 1979.

[3] D. McGravie, and H. Parolis, The acid-labile, peripheral chains of the mucilage of Opuntiaficus-indica. Carbohydrate Research, vol. 94, no .1, pp. 57-65, 1981.

[4] E. Sepúlveda, C. Sáenz, E. Aliaga, and C. Aceituno, Extraction and characterization of mucilage in Opuntia spp. Journal of Arid Environments. vol. 68, no. 4, pp. 534–545, 2007.

[5] T. Pichler, K.Young, and N. Alcantar, Eliminating turbidity in drinking water using the mucilage of a common cactus. Water Science & Technology,vol. 12, no. 2, pp. 179–186, 2012.

[6] N. Gebresamuel and T. Gebre-Mariam, Comparative physico-chemical characterization of the mucilages of two cactus pears (Opuntia spp.) obtained from Mekelle, Northern Ethiopia. Journal of Biomaterials and Nanobiotechnology, Vol. 3, pp. 79–86, 2012.

[7] L. Medina-Torres, E. Brito-De La Fuente, B. Torrestiana-Sánchez, R. Katthain, Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocolloids, vol. 14, pp. 417-424, 2000.

[8] F.M.Goycoolea, A. Cardenas, G. Hernandez, J. Lizardi,G. Alvarez, F.J. Soto, M. Valdez, M. Rinaudo, M. Milas,J. Hernandez, Polysaccharides isolated from Mezquite and other desert plants. International Simposium of utilization and practices with wild flora from arid zones. Hermosillo, Sonora, Mexico, pp. 245-260, 2000.

[9] L. Medina-Torres, E. Brito-De La Fuente, B. Torrestiana-Sánchez, S. Alonso, Mechanical properties of gels formed by mixtures of mucilage gum (Opuntia ficus indica) and carrageenans. Carbohydrate Polymers, vol. 52, pp. 143-150, 2003.

[10] A. Cardenas, F.M. Goycoolea, M. Rinaudo, On the gelling behaviour of “nopal” (Opuntia ficus indica) low methoxyl pectin. Carbohydrate Polymers, vol. 73, no. 2, pp. 212−222, 2008.

[11] F.M. Goycoole, and A. Cardenas, Pectins from Opuntia Spp., A Short Review. Journal of the Professional Association for Cactus Development, vol. 5, pp. 17-29, 2003.

[12] S. Trachtenberg, and V. Mayer, Composition and properties of Opuntia ficus indica mucilage. Phytochemistry, vol. 20, no. 12, pp. 2665−2668, 1981.

[13] L. Saag, G. Sanderson, P. Moyna, G. Ramos, Cactaceae Mucilage Composition. Journal of the Science of Food and Agriculture, vol. 26, pp. 993–1000, 1975.

[14] B.S. Paulsen, and S.P. Lund, Water soluble polysaccharides of Opuntia ficus indica. Phytochemistry. vol. 18, pp. 569–571, 1979.

[15] E. Forni, M. Penci and A. Polessello, A preliminary characterization of some pectins from quince (Cydonia oblonga Mill.) and prickly pear (Opuntia ficus indica) peel. Carbohydrate Polymers, vol. 23, pp. 231–234, 1994.

[16] C. Sáenz, E. Sepúlveda, and B. Matsuhiro, Opuntia spp. mucilages: A functional component with industrial perspectives. Journal of Arid Environments, vol. 57, pp. 275–290, 2004.

[17] A. Cárdenas, W.M. Arguelles,and F.M. Goycoolea, On the possible role of Opuntia ficus indica mucilage in lime mortar performance in the protection of historical buildings. Journal of the Professional Association for Cactus Development, vol. 3, pp. 1-8, 1998.

[18] N. Garti, Hydrocolloids as emulsifying agents for oil-in-water emulsions. Journal of Dispersion Science and Technology, vol. 20, no. 1-2, pp. 327–355, 1999.

[19] K.A. Young, A. Anzalone, T. Pichler, T. Picquart, and N.A. Alcantar, The mexican cactus as a new environmentally benign material for the removal of contaminants in drinking water. MRS Online Proceedings Library, 930 p, 2006.

[20] D. Gardiner, P. Felker and T. Carr, Cactus extract increases water infiltration rates in two soils. Communications in Soil Science and Plant Analysis, vol. 30, no. 11-12, pp. 1707–1712, 1999.

[21] A. Matias, S.L. Nunes, J. Poejo, E. Mecha, A.T. Serra, P.J. Madeira, M.R.Bronze, C.M. Duarte,Antioxidant and anti-inflammatory activity of a flavonoid rich concentrate recovered from Opuntia ficus indica juice. Jurnal of Food&Function, vol. 5, no. 12, pp. 3269-80, 2014.

[22] D. Butera, L. Tesoriere, F. Di Gaudio, A. Bongiorno, M Allegra, A.M. Pintaudi, R. Kohen, M.A. Livrea, Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. Journal of Agricultural and Food Chemistry, vol. 50, no. 23, pp. 6895-901, 2002.

[23] C. Gentile , L. Tesoriere, M. Allegra, M.A. Livrea, P. D'Alessio, Antioxidant betalains from cactus pear (Opuntia ficus indica) inhibit endothelial ICAM-1 expression. Annals of the New York Academy of Sciences, pp 486, 2004.

[24] J.Y. Cho, S.C. Park, T.W. Kim, K.S. Kim, J.C. Song, S.K. Kim, H.M. Lee, H.J. Sung, H.J. Park, Y.B. Song, E.S.Yoo, C.H. Lee, M.H. Rhee, Radical scavenging and anti-inflammatory activity of extracts from Opuntia humifusa Raf. Journal of Pharmacy and Pharmacology, vol. 58, no. 1, pp. 113-9, 2006.

[25] S.P. Chauhan, N.R. Sheth, and B.N. Suhagia. Analgesic and Anti-inflammatory action of Opuntia elatior Mill fruits. Journal of Ayurveda and Integrative Medicine, vol. 6, no. 2, pp. 75–81, 2015.

[26] M.A. Chaouch, J. Hafsa, C. Rihouey, H. Majdoub, Effect of extraction conditions on the antioxidant and antiglycation capacity of carbohydrates from Opuntia robusta cladodes. International Journal of Food Science and Technology, vol. 51, no. 4, pp. 929–937, 2016.

[27] A. Ahmad, J. Davies, S. Randall, G.R. Skinner, Antiviral properties of extract of Opuntia streptacantha. Antiviral Research, vol. 30, no. 2-3, pp. 75-85, 1996.

[28] F. Naselli, L .Tesoriere, F. Caradonna, D. Bellavia, A. Attanzio, C. Gentile, M.A. Livrea, Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus indica associated with re-activation of the oncosuppressor p16 (INK4a) gene in human colorectal carcinoma (Caco-2) cells. Biochemical Biophysical Res Commun. vol. 450, no.1, pp. 652-8, 2014.

[29] J. Kim, S.Y. Soh, J. Shin, C.W. Cho, Y.H. Choi, S.Y. Nam, Bioactives in cactus (Opuntia ficus-indica) stems possess potent antioxidant and pro-apoptotic activities through COX-2 involvement. Journal of the Science of Food and Agriculture, vol. 95, no.13, pp. 2601-2606, 2015.

[30] M. Espino-Diaz, J.J. Ornelas-Paz, M.Á. Martínez-Téllez,C. Santillán, Development and Characterization of Edible Films Based on Mucilage of Opuntia ficus indica (L.). Journal of Food Science, vol. 75, no. 6, pp. 347-52, 2010.

[31] J.C. Guevara-Arauza, J.J. Órnelas-Paz, S. Rosales, R.E. Soria, L.M.T. Paz, D.J. Pimentel-González, Biofunctional activity of tortillas and bars enhanced with nopal. Preliminary assessment of functional effect after intake on the oxidative status in healthy volunteers. Chemistry Central Journal, vol. 5, pp. 1–10, 2011.

[32] M. Roberfroid, & J. Slavin, Nondigestible Oligosaccharides. Critical Reviews in Food Science and Nutrition, vol. 40, pp. 461-480, 2000.

[33] R.S. Singh and R.P. Singh, Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technology and Biotechnology, vol. 48, pp. 435-450, 2010.

[34] D.P.M. Torres, M.P.F. Goncalves, J.A. Teixeira &L.R. Rodrigues, Galacto-Oligosaccharides : Production, Properties, Applications, and Significance as Prebiotics. Comprehensive Reviews in Food Science and Food Safety,vol. 9, pp. 438-454, 2010.

[35] G.R. Gibson, and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, vol. 125, pp. 1401–1412, 1995.

[36] G.R. Gibson, H.M. Probert, J.V. Loo, R.A. Rastall, and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Review, vol. 17, pp. 259-275, 2004.

[37] A. Koocheki, S.A. Mortazavi, F. Shahidi, S.M.A. Razavi, andA.R. Taherian, Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. Journal of Food Engineering, vol. 91, pp. 490–496, 2009.

[38] E.R. Morris, A.N. Cutler, S.B. Ross-Murphy, D.A. Rees, and J. Price, Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydrate Polymers, vol. 1, pp. 5–21, 1981.

[39] C.I. Nindo, J. Tang, J.R. Powers, and P.S. Takhar, Rheological properties of blueberry puree for processing applications. Food Science and Technology, vol. 40, pp. 292–299, 2007.

[40] B. Petera, C. Delattre, G. Pierre, A. Wadouachi, R. Elboutachfaiti, E. Engel, L. Poughon, P. Michaud, T.A. Fenoradosoa, Characterization of arabinogalactan rich mucilage from Cereus triangularis cladodes. Carbohydrate Polymers,vol.127, pp. 372–380, 2015.

[41] A. Mehrdad, L.A. Saghatforoush, G. Marzi, Effect of temperature on the intrinsic viscosity of poly(ethylene glycol) in water/dimethyl sulfoxide solutions, Journal of Molecular Liquids, vol. 161, pp. 153-157, 2011.

[42] S. Wichienchot, M. Jatupornpipat, R.A. Rastall, Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, vol. 120, pp. 850-857, 2009.

[43] G. Kelly, Inulin-Type Prebiotics – A Review: Part 1. Alternative Medicine Review, vol. 13, no.4, pp. 315- 329, 2008.

[44] M. Korakli, M.G. Ganzle, R.F. Vogel, Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. Journal of Applied Microbiology, vol. 92, pp. 958–965, 2002.

[45] M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substance. Analytical Chemistry, vol. 28, pp. 350-356, 1956.

[46] R. Weigert,Advances in Intravital MicroscopyFrom Basic to Clinical Research. Springer Medical, 424 p, 2014.

[47] J. Warrand, P. Michaud, L. Picton, G. Muller, B. Courtois, R. Ralainirina. Contributions of intermolecular interactions between constitutive arabinoxylans to the flax seeds mucilage properties. Biomacromolecules, vol. 6, no. 4, pp. 1871-1876, 2005.

[48] H. Majdoub, S. Roudesli, A. Deratani, Polysaccharides from prickly pear peel and nopals of Opuntia ficus indica: extraction, characterization and polyelectrolyte behaviour. Polymer International, vol. 50, pp. 552-560, 2001.

[49] A. Cardenas, I. Higuera-Ciapara, F.M. Goycoolea, Rheology and aggre-gation of cactus (Opuntia ficus indica) mucilage in solution. Journal of the Professional Association for Cactus Development, vol. 2, pp. 152–159, 1997.

[50] T. Doco, and P.Williams, Purification and structural characterization of a type II arabinogalactan-Protein from champagne wine. American Journal of Enology and Viticulture,vol.64, pp. 364-369,2013.

[51] G.B. Fincher, W.H. Sawyer, and B.A. Stone, Chemical and physical properties of arabinogalactan-peptide from wheat endosperm. Biochemical Journal, vol. 139, pp. 535-545, 1974.

[52] L. Utracki, and R. Shima, Corresponding state relations for the viscosity of moderately concentrated polymer solutions. Journal of Polymer Science, vol.1, pp. 1089–1098, 1963.

[53] R.J. Redgwell, C. Schmitt, M. Beaulieu, D. Curti, Hydrocolloids from coffee: physicochemical and functional properties of an arabinogalactan-protein fraction from green beans. Food Hydrocolloids, vol. 19, pp. 1005-1015, 2005.

[54] C. Sanchez, D. Renard,P. Robert, C. Schmitt & J. Lefebvre, Structure and rheological properties of acacia gum dispersions. Food Hydrocolloids, vol. 16, pp. 257-267, 2002.

[55] D.P. Chattopadhyayand, M.S. Inamdar, Aqueous Behaviour of Chitosan. International Journal of Polymer Science,7 p, 2010.

[56] T.G. Mezger, The rheology handbook: for users of rotational and oscillatory rheometers (2., rev. ed.). Hannover:Vincentz Network, 34 p, 2006.

[57] R.P. Heldman, and D.R. Singh, Introduction to food engineering (5thed.). Amsterdam: Elsevier. 160 p, 2013.

[58] S.Bair,High-pressure rheology for quantitative elastohydrodynamics (1st ed.). Amsterdam: Elsevier., 136 p, 2007.

[59] E.E. Garcia-Cruz, J. Rodriguez-Ramireza, L.L. MendezLagunas, L. Medina-Torres, Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes. Carbohydrate Polymers, vol. 91, pp. 394-402, 2013.

[60] Y. Wang, Present and future in food science and technology. Food Research International, vol. 42, no. 1, pp. 8-12, 2009.

[61] X.S. Wang, Q. Dong, J.P. Zuo, J.N. Fang, Structure and potential immunological activity of a pectin from Centella asiatica(L.) Urban. Carbohydrate Research, vol. 338, pp. 2393-2402, 2003.

[62] M. Nadour, C. Laroche, G. Pierre, C. Delattre, F. Moulti-Mati, and P. Michaud, Structural characterization and biological activities of polysaccharides from olive mill wastewater. Applied Biochemistry and Biotechnology, vol. 177, no. 2, pp. 431-445, 2015.

[63] M. Al-Tamimi, R. Palframan, J. Cooper, G. Gibson, R. Rastall, In vitro fermentation of sugar beet arabinan and arabinooligosaccharides by the human gut microflora. Journal of AppliedMicrobiology, vol. 100, pp. 407−414, 2006.

[64] L.V. Thomassen, L.K. Vigsnæs, T.R. Licht, J.D. Mikkelsen, A.S. Meyer, Maximal release of highly bifidogenic soluble dietary fibers from industrial potato pulp by minimal enzymatic treatment. Applied Microbiology and Biotechnology, vol. 90, pp.873−884, 2011.

[65] M. Michalak, L.V. Thomassen, H. Roytio, A.C. Ouwehand, A.S. Meyer, J.D. Mikkelsen, Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans in Pichiapastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans. Enzyme and Microbial Technology, vol. 50, pp. 121−129, 2011.

[66] N. Saad, C. Delattre, M. Urdaci, J.M. Schmitter, P. Bressollier, An Overview of the last advances in probiotic and prebiotic field. LWT. Food Science Technology, vol. 50, pp. 1-16, 2013.

[67] O.N. Donkor, S.L.I. Nilmini, P. Stolic, T. Vasiljevic, N.P. Shan, Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. International Dairy Journal., vol.17, pp. 657-665, 2007.

[68] R.P.S. Oliveira, P. Perego, M.N. Oliveira, A. Converti, Effet of inulin as a prebiotic to impove growth and counts of a probiotic cocktail in fermented skim milk. Food science and technology, vol. 44, pp. 520-523, 2011.

[69] C.L. Vernazza, B.A. Rabiu, G.R. Gibson, Human colonic microbiology and the role of dietary intervention: introduction to prebiotics. In Gibson, G. R. and Rastall, R. A. (Eds.). Prebiotics: Development and Application, pp. 1-28, 2006.

[70] P. Ramnani, R. Chitarrari, K. Tuohy, J. Grant, S. Hotchkiss, K. Philp, R. Campbell, C. Gill, and I. Rowland, In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe, vol.18, pp. 1–6, 2012.

[71] H.A. Gavlighi, A.S. Meyer, D.N.A. Zaidel, M.A. Mohammadifar, J.D. Mikkelsen, Stabilization of emulsions by gum tragacanth (Astragalus spp.) correlates to the galacturonic acid content and methoxylation degree of the gum. Food Hydrocolloids, vol. 31, pp. 5−14, 2013.