IJARP

International Journal of Advanced Research and Publications (2456-9992)

High Quality Publications & World Wide Indexing!

Investigation On Bleaching Of Infrared Radiofluoroscence Signal With Optimized Power Of LEDS To Match The Standard Solar Spectrum

Volume 3 - Issue 6, June 2019 Edition
[Download Full Paper]

Author(s)
I. A. El Mesady
Keywords
Infrared-Radiofluoroscence, Over-bleached, Solar simulator.
Abstract
In any luminescence measurement and to regenerate the luminescence signal, resetting of the signal is needed. This can be achieved by either natural or laboratory bleaching. In this paper the resetting behavior of the Infrared-Radiofluoroscence (IR-RF) signal has been investigated using six wavelengths LED-based solar simulator. For the IR-RF signal to complete reset in nature and not to be “over-bleached” in the laboratory, the intensities of the available LEDs on Lexsyg reader were adjusted to deliver low power signal to simulate the natural sunlight. It was found that signal could be reset using low power at least 6 h of bleaching, which was necessary to confirm the resetting of signal under power equivalent of almost 57 mW/cm2. In addition, bleaching time was reduced in order to get the highest attainable power of about 246 mW/cm2, which was capable of bleaching signal in 1 h. This finding is of great importance to apply IR-RF technique in sediments dating. It confirms that bleaching by low power is possible and machine time can be reduced by increasing power but still matching with natural sun.
References
[1] T. Trautmann, M.R Krbetschek, A. Dietrich, W. Stolz, Investigations of feldspar radioluminescence: potential for a new dating technique, Radiat. Meas. Vol. 29, pp. 421–425, 1998.

[2] A. Novothny, M. Frechen, E. Horvath, M. Krbetschek, S. Tsukamoto, Infrared stimulated luminescence and radiofluorescence dating of aeolian sediments from Hungary, Quat. Geochronol vol. 5, pp. 114–119, 2010.

[3] T. Trautmann, M.R. Krbetschek, A. Dietrich, W. Stolz, Feldspar radioluminescence: a new dating method and its physical background, J. Lumin. Vol. 85, pp. 45–58, 1999.

[4] M.R. Krbetschek, T. Trautmann, A. Dietrich, W. Stolz, Radioluminescence dating of sediments: Methodological aspects, Radiat. Meas. Vol. 32pp. 493–498, 2000.

[5] G. Erfurt, M. R. Krbetschek, T. Trautmann, W. Stolz, Radioluminescence (RL) probe dosimetry using Al2O3:C for precise calibration of beta sources applied to luminescence dating, Radiat. Phys. Chem. Vol. 61, pp. 721- 722, 2001.

[6] G. Erfurt, M. Krbetschek, IRSAR-A single-aliquot regenerative-dose dating protocol applied to the infrared radiofluorescence (IR-RF) of coarse-grain K feldspar, Anc. TL vol. 21, pp. 35–42, 2003.

[7] T. Schilles, J. Habermann, Radioluminescence dating: The IR emission of feldspar, Radiat. Meas. Vol. 32, pp. 679–683, 2000.

[8] M. Frouin, S. Huot, S. Kreutzer, C. Lahaye, M. Lamothe, A. Philippe, N. Mercier, An improved radiofluorescence single-aliquot regenerative dose protocol for K-feldspars, Quaternary Geochronology vol. 38, pp. 13–24, 2017.

[9] S. Kreutzer, M. Frouin, M. Krishna Murari, M. Fuchs, N. Mercier, IR-RF dating on K-feldspar: tracing environmental changes in the Middle Pleistocene? EGU General Assembly Conference Abstract, 19, pp. 13901, 2017.

[10] D. Richter, A. Richter, K. Dornich, Geochronometria, Lexsyg- a new system for luminescence research, Geochronometria vol. 40, pp. 220-228, 2013.

[11] T. Lapp, M. Jain, K. J. Thomsen, A.S. Murray, J. P. Buylaert, New luminescence measurement facilities in retrospective dosimetry, Radiat. Meas. Vol. 47, pp. 803–808, 2012.

[12] T. Trautmann, M.R. Krbetschek, A. Dietrich, W. Stolz, Basic principle of radioluminescence dating and a localized transition model, Radiat. Meas. Vol. 32, pp. 487–492, 2000.

[13] J. P. Buylaert, M. Jain, A.S. Murray, K. J. Thomsen, and T. Lapp, IR-RF dating of sand-sized K-feldspar extracts: A test of accuracy, Radiat. Meas. Vol. 47, pp. 759–765, 2012.

[14] M. Frouin, S. Huot, N. Mercier, C. Lahaye, M. Lamothe, Radiat. Meas. The issue of laboratory bleaching in the infrared-radiofluorescence dating method, Radiat. Meas. Vol. 81, pp. 212–217, 2015.

[15] A. Kunz, M. Frechen, R. Ramesh, B. Urban, Luminescence dating of late holocene dunes showing remnants of early settlement in Cuddalore and evidence of monsoon activity in south east India, Quaternary International, vol. 222, pp. 194–208, 2010.

[16] M. Bliss, R.T. Betts, R. Gottschalg, Solar Energy Materials & Solar Cells, An LED-based photovoltaic measurement system with variable spectrum and flash speed, Solar Energy Materials & Solar Cells vol. 93, pp. 825–830, 2009.

[17] M. Georgescu, A. Girtu, V. Ciupina, Spectral calibration of a LED–based solar simulator – a Theoretical approach, Journal of optoelectronics and advanced materials, 2013, 15, 1-2, 31 – 36. Indian standard photovoltaic devices: part 3 Measurement principals for terrestrial photovoltaic solar devices with reference spectral irradiance data, solar photovoltaic energy systems sectional committee, ET 28. 1998.

[18] M.V. Abhay, J. Pavithran, L. Osten, A. Jinumon, C.P. Mrinalini, LED Based Solar Simulator, IEEE Global Humanitarian Technology Conference, 2014. South Asia Satellite (GHTC-SAS) September 26-27. ASTM Standard G173-03e1 - Standard Tables for Reference Solar Spectral Irradiances: Direct Norma and Hemispherical on 37°, ASTM International, West Conshohocken, PA, USA, .www.astm.org.

[19] A. Novičkovas, A. Baguckis, A. Vaitkūnas, A. Mekys, V. Tamošiūnas, Investigation of solar simulator based on highpower light emitting diodes, Lithuanian Journal of Physics, vol. 54, issue 2, pp. 114–119, 2014.

[20] G. Grandi, A. Ienina, M. Bardhi, IEEE Transactions on Industry Applications, Effective Low-Cost Hybrid LED-Halogen Solar Simulator IEEE Transactions on Industry Applications vol. 50, issue 5, pp. 2014-3055, 2014.

[21] S. Huot, M. Frouin, M. Lamothe, Evidence of shallow TL peak contributions in infrared radiofluorescence, Radiat. Meas. Vol. 81, pp. 237–241, 2015. 

[22] S. Kreutzer, C. Schmidt, M.C. Fuchs, M. Dietze, M. Fischer, M. Fuchs, Introducing an R package for luminescence dating analysis, Ancient TL. Vol. 30, issue 1, 1-8, 2012.