Cytotoxic And Genotoxic Properties Of Saraisa (Muntingia Calabura) Bark Extract
Volume 3 - Issue 5, May 2019 Edition
[Download Full Paper]
Author(s)
Apple Grace C. Garingo, Anabelie P. Maumay, Grace W. Dango, Reymund C. Derilo, Joemar D. Subong
Keywords
brine shrimp, cytotoxicity, genotoxicity, M. calabura, root growth inhibition
Abstract
This study examined the cytotoxic and genotoxic properties of saraisa (Muntinga calabura). This quantitative-experimental study used the Brine Shrimp Lethality (BSLA) and Allium cepa root growth inhibition assays to test its cytotoxic and genotoxic properties, respectively. These properties were evaluated based from the mortality rate of the brine shrimp nauplii and the root length inhibition of onion (A. cepa) after being exposed to varying extract concentrations. In this experiment, the properties were assessed by comparing the cytotoxic and genotoxic properties of the different concentrations with the negative control using F-test and LSD pairwise comparison. The test for cytotoxicity revealed that M. calabura demonstrated a moderate level of cytotoxicity against brine shrimp nauplii, with a lethal concentration (LC50) of 143.598 parts per million (ppm). There was a significant difference between the cytotoxic property of the different concentrations of the extract and the negative control. Furthermore, the root growth inhibition test revealed the high genotoxic effect of the extract by successfully inhibiting the growth of A. cepa roots. The bioactivity of M. calabura reported in this study is an indication of the presence of potent compounds which are good sources of important drug candidates. Thus, the study found the need to investigate further M.calabura’s biological properties for its possibility to be a potential drug candidate.
References
[1] Akinboro, A., & Bakare, A.A. (2007). Cytotoxic and genotoxic effects of aqueous extract of five medicinal plants on Allium cepa Linn. Journal of Ethnopharmacology, 112, 470-475. Retrieved from: http://www.researchgate.net
[2] Akyil, D., Oktay, S., Liman, R., Eren, Y., & Konuk,M. (2012).Genotoxic and mutagenc effects of acqueous extract from aerial parts of Achillea teretifolia. Turkish Journal of Biology,. 36, 441-448. doi:10.3906/biy-1112-25
[3] American Cancer Institute. (2017), Chemotherapy. Retrieve from: https://www.cancer.org/ treatment/treatments-and-sideeffects/treatment.types/ chemotherapy.html
[4] Buhian, W. P., Rubio, R., & Valle Jr., D, (2016). Bioactive metabolite profiles and antimicrobial activity of ethanolic extract from Muntingia calabura L. leaves and stems. Asian Pacific Journal of Tropical Biomedicine, 6(8), 682-685. doi: 10.1016/j.apjpd.2016.06.006
[5] C¸elik, T. A., & Aslant¨urk, O. S., (2010). Evaluation of cytotoxicity and genotoxicity of Inula Viscosa Leaf Extracts with Allium Test. Journal of Biomedicine and Biotechnology. doi:10.1155/2010/189252
[6] Cancer Society of Finland (2017). Facts about cancer. Retrieved from http://www.allaboutcancer.finland
[7] Chan S. M., Khoo K. S. & Sit N. W., (2015). Interactions between plant extracts and cell viability indicators during cytotoxicity testing: Implications for ethnopharmacological studies. Tropical Journal of Pharmaceutical Research, 14(11). doi: 10.41314/tjpr.v14i11.6
[8] Chen J. G., & Horwitz S. B. (2002). Differential mitotic responses to microtubule-stabilizing and –destabilizing drugs. Cancer Res, 62 (7), 1935 – 1938. Retrived from: https://www.ncbi.nlm.nih.gov/pubmed/ 11929805
[9] Clarkson, C., Maharaj, V.J., Crouch, N.R., Grace, O.M., Pillay, P., Matsabisa, M. G., Bhagwandin, N., Smith, P.J., & Folb, P.I. (2004). In vitro antiplasmodial activity of medicinal plants native to or naturalized. South Africa. J. Ethnopharm, 92, 177-191.
[10] Cuyacot A.R., Mahilum, J.J., & Madamba M.R.S. (2014). Cytotoxicity potentials of some medicinal plants in Mindanao, Philippines. Asian Journal of Plant Sciences and Research, 4(1), 81-89. doi:10.13140/2.1.3165.4404
[11] Department of Health (2017). Cancer. Retrieved from: https://www.doh.gov.ph/Health-Advisory/Cancer
[12] Firbas P. & Amon T. (2014). Chromosome damage studies in the onion plant Allium cepa L., Caryologia, 67 (1), 25-35. doi:10.1080/00087114.2014.891696
[13] Fridlender, M., Kapunik, Y., & Koltai, H. (2015). Plant derived substances with anti- cancer activity: From folkloric to practice. Front Plant Sci., 6, 199. doi: 10.3389/fpls.2015.007799
[14] Fusconi, A., Repetto, O., Bona, E., Massa, N., Gallo, C., Dumas-Gaudot, E., & Berta, G. (2006). Effects of Cadmiumm on meristematic activity and nucleus ploidy in roots of Pisum sativum L. cv. Frissonn seeding. Environmental and Experimental Botany, 58(1), 253-260. doi:10.1016/j.nvexpbot.2005.09.008
[15] Greenwell, M., & Rahman. (2015). Medicinal plants: Their use in anticancer treatment. Europe PMC Funders Group, 6 (10) 4103-4112. doi:10.13040/ijpsr.0975-8232.6(10).4103-12
[16] Hossain, M. J., Khaleda, L., Chowdhury, A. M. Z., Arifuzzaman, M., & Al-Forkan, M., (2013). Phytochemical screening and evaluation of cytotoxicity and thrombolytic properties of Achyranthes Aspera leaf extract. Journal of Pharmacy and Biological Sciences, 6(3), 30-38. Retrieved from: www.iosrjournals.org
[17] Kaneda N, Pezzuto J.M., Soegarto D.D., Kinghorn A.D, Farnsworth N.R., Santisuk T., Tuchinda P., Udchachon J., & Reutrakul V. (1991). Plant anticancer agents, XLVIII. New cytotoxic flavonoids from Muntingia calabura roots. Journal of Natural Products, 54, 196-206.
[18] Mahmood, N. D., Nasir, N. L. M., Rofiee, M. S., Tohi, S. F. M., Ching, S. M., Teh, L. K. … Zakaria, Z. A. (2014), Muntingia calabura: A review of its traditional uses, chemical properties, and pharmalogical observations. Pharmaceutical Biology, 52(12), 1598-1623. doi: 10.3109/13880209.2014.908397
[19] Naveen, S. G. R., Dhananjaya K., Ravikumar, K.R., & Mallesha. H. (2012). Potential use of Muntingia calabura L. extracts against human and plant pathogens. Phcog Journal,4(34). doi: 10.5530/pj.2012.34.8
[20] Olowa, L., & Nuneza, O. (2013) Brine Shrimp lethality assay of the ethanolic extract of three selected species of medicinal plants from Iligan city, Philippines.International Research Journal of Biological Sciences.2(11), 74- 77
[21] Oncolink. (2017). Chemotherapy: The basics. Retrieved from: https://www.oncolink.org/cancer.treatment/chemotherapy/overview/ chemotherapy- the basics
[22] Patwardhan (2013). Importance of bioprospecting and new approaches to drug development. Biochemistry and Pharmacology 2(4), doi: 10.4172/2167-0501
[23] Philippine Health Statistics (2009). All about cancer. Retrieved from: http://www.doh.gov.ph
[24] Rocha, B., Peron, R., Paula, A., Marques, F. K. M., Sousa, M. M. S., de Olivera, M. E., do Nascimento, V. A. & Larissa, A. (2018). Toxic, cytotoxic, genotoxic potential of synthesis food flavorings. Acta Toxicol. Argent, 26(2). 65-70.
[25] Sarah Q. S., Anny F. C., & Misbahuddin M., (2017). Brine shrimp lethality assay. Bangladesh Journal Pharmacol, 12, (186-189). doi: 10.3329/bjp.v12i2.3279
[26] Shaikh, A. M, Shrivastava, B., Apte, K. G., & Navale, S. D. (2016). Medicinal plants as potential source of anticancer agents: A review. Journal of Pharmacognosy and Phytochemistry, 5(2), 291-295.
[27] Vuuren, R. J. V., Visage, M., Theron, A. & Joubert, A. (2015). Antimitotic drugs in the treatment of cancer. Cancer Chemotherapy Pharmacology, 76, 1101-1112.
[28] Yildiz, M., Cigerci,I. H., Konuk, M., Fidan, A. F & Terzi, H.(2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in A. cepa root cells by chromosome aberration and comet assays. Chemosphere,. 75(7), 934- 938. Retrieved from: https://doi.org/10.1016/j.chemosphere.2009.01.023
[29] Zakaria, Z. A., Sulaiman, M. R., Mat Jais, A. M. Somchit, M. N., Jayaraman, K. V., & Balakhrisnan, F.C. A. (2006). The antinociceptive activity of Muntingia calabura aqueous extract and the involvement of L-arginine oxide/cyclic guanosine monophosphate pathway in its observed activity in mice. Fundamental & Clinical Pharmacology, 20(4). doi:org/10.1111/j.1472-8206.2006.00412.x