Genetic Diversity Of Five Strain Carps (Cyprinus Carpio L.) Based On DNA Microsatelite Marker
Volume 3 - Issue 6, June 2019 Edition
[Download Full Paper]
Author(s)
Indah Nur Chomsy1*, Agung P.W. Marhendra1, Nia Kurniawan1, Hamdani D. Prasetyo2
Keywords
Cyprinus carpio L., DNA microsatelite, heterozigosity, relationship, strain
Abstract
Objective: The purpose of this study was to analyze the allele heterozygosity of five strains of Carp (Cyprinus carpio L.) based on microsatellite DNA markers and determine the relationship between them based on allele heterozygosity using the markers. Methods: The method of this research is DNA isolation according to the TIANGEN kit protocol using muscle tissue samples from five strains of Indonesian local carp strains: Sinyonya, Punten, Majalaya, Koi, and Najawa strains. Amplification was carried out using ten microsatellite primers. The band observed in the qualitative test results on 1% agarose gel was converted into fragment length (bp) based on the 100-3000 bp DNA Ladder. Allele heterozygosity was analyzed using GenAlex 6.503. The fragment length of each locus was tested using variance analysis test. Relationship of the strain was analyzed using POPGENE 1.32 to construct UPGMA dendrograms modified from the NEIGHBOR Procedure of PHYLIP 3.5 and visualized using MEGA7. Results: Allele heterozygosity of the five strains of carp in Indonesia is known to be significant and represent a quite good allele variations. Punten strains are known to have the most polymorphic locus character (90%). The relationships based on the analysis of heterozygosity of microsatellite DNA alleles sh owed that there were two groups of strains separated by significant genetic distances. The first group consisted of three strains namely Koi, Majalaya, and Punten, while the second group consisted of Sinyonya and Najawa strains. Conclusion: The carp strain grouping is influenced by the intensive and long-term local cultivation processes since the first culture in Indonesia untill now.
References
[1]. Kershaw, Diana R. 2002. Animal Diversity. Chapman and Hall. London
[2]. David L, Rajasekaran PJ, Fang J, Hillel J and Lavi U. 2001. Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and new set of microsatellite markers. Mol Genet Genomics 266:353-362
[3]. Kłobukowski J., K. Skibniewska, K. Janowicz, et al. 2018. Selected Parameters of Nutritional and Pro-Health Value in the Common Carp (Cyprinus carpio L.) Muscle Tissue. Journal of Food Quality 2018; 6082164, 9 pages.
[4]. Ministry of Maritime Affairs and Fisheries, Kementrian Kelautan dan Perikanan tahun 2013. Sepuluh Produsen Ikan Mas Utama di Indonesia. http://kkp.co.id. Diakses pada 10 Oktober 2017.
[5]. Froese, R., D. Pauly. 2002. Fish base: Species summary for Cyprinus car pioâ€. Available on: http://www. Fishbase.org. Accesed on 9th November 2016.
[6]. Hardjamulia, A., dan Suseno D. 1976. Some aspect of freshwater fish genetics. Agriculture Genetic Workshop. Universitas Padjajaran. Bandung.
[7]. Sumantadinata, K. 1995. Present state of common carp (Cyprinus carpio) stock in Indonesia. Aquaculture 129 : 205-209.
[8]. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, et al. 2006. The DNA sequence and biological annotation of human chromosome 1". Nature. 441 (7091): 315–21
[9]. Balon E.K.. 1995b. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers, Aquaculture (129): 3–48.
[10]. Scribner, Kim T., Evans J.E., Morreale S.J., Smith M.H. 1986. Genetic divergence among populations of the yellowbellied slider turtle (Pseudemys scripta) separated by aquatic and terrestrial habitats. Copeia (3): 691–700
[11]. Abdul Muneer, A. Gopalakrishnan, K. K. Musammilu dkk., 2009. Genetic variation and population structure of endemic yellow catfish, Horabagrus brachysoma (Bagridae) among three populations of Western Ghat region using RAPD and microsatellite markers, Molecular Biology Reports, vol. 36,no. 7: 1779–1791
[12]. Penn D.J., Damjanovich K., Potts W.K., 2002. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proceedings of the National Academy of Sciences, Vol.99: 11260–11264.
[13]. Mays, H.L.J., Hill G.E. 2004. Choosing mates: good genes versus genes that are a good fit. Trends in Ecology & Evolution Vol. 29 : 564–570.
[14]. Crooijmans, R.P.M.A., V.A.F. Bierbooms, J. Komen, J.J. Van der Poel, M.A.M. Groenen. 1997. Microsatelite markers in common carp. Animal Genetics. Vol. 28: 129-134
[15]. Macaranas, J. M., Sato, J., Fujio, Y., 1986. Genetic characterization of cultured populations of Japanese common carp. Tohoku J. Agric. Res. 37, 21–29.
[16]. Sumantadinata, K., Taniguchi, N., 1990. Comparison of electrophoretic allele frequencies and genetic variability of common carp stocks from Indonesia and Japan. Aquaculture
[17]. Kohlman, Klasus., Riho Gross, Asiya Murakeva, dan Petra Kersten. 2003. Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquat. Living Resour. 16: 421–431
[18]. Tanck M.W.T., Baars H.C.A., Kohlmann K., Komen J. And van der Poel. 2000. Genetic characterization of wild Dutch common carp (Cyprinus carpio L.). Aquac Res 31:779-783.
[19]. Lehoczky I, Magyary I, and Hancz. 2002. Study of the genetic variability of six domestic common carp strains using microsatellite DNA markers. Allattenyesztes es Takarmanyozas 51:8-19
[20]. Bártfai, R., Egedi, S., Yue, G.H., Kovács, B., Urbányi, B., Tamás, G., Horváth, L., Orbán, L., 2003. Genetic analysis of two common carp broodstocks by RAPD and microsatellite markers. Aquaculture 219, 157–167.
[21]. Yue, Gen Hua, Mei Yin Hoa, Laszlo Orbana, Johannes Komenb. 2003. Microsatellites within genes and ESTs of common carp and their applicability in silver crucian carp. Aquaculture (234): 85–98.
[22]. Pennings PS, Hermisson J. 2006. Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. Mol Biol Evol. 23:1076–1084.
[23]. Tambasco, D. D. 2003. Canddate genes for growth traits in beef cattle crosses Bos taurus x Bos indicus. Journal of Animal Breeding Genetics (120): 51.
[24]. Padhi, B. K. dan P. K. Mandal. 2000. Applied fish Genetics. Fishing Chimes.Visakhapatnam. India.
[25]. Desvignes, Jean F., Jean Laroche, Jean D. D., Yvette B. 2001. Genetic variabillity in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture (194): 291-301
[26]. Lande, R. 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution (48): 1460-1469.
[27]. Lynch, M., & Walsh, B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates Inc. Sunderland, Massachusetts, USA. 980 pp.
[28]. Vrijenhoek, R. C. 1994. Genetic diversity and fitness in small populations. In: Conservation genetics. Birkhäuser Verlag, Basel, Switzerland.
[29]. Singhm E., O.P. Sharma, H.K. Jain, A. Sharma, M.L. Ojha, dan V.P. Saini. 2015. Microsatellite based genetic diversity and differentiation of common carp, Cyprinus carpio in Rajasthan (India). Natl. Acad. Sci. Lett. 38(3): 193–196
[30]. Zou, J., Wu Q., Wang Z., Ye Y. 2004. Genetic Variation Analysis within and among Six Varieties of Common Carp (Cyprinus carpio L.) in China Using Microsatellite Markers. Russian Journal of Genetics, Vol. 40(10): 1144–1148.
[31]. Mondol, K.R.. Islam, S., & Alam, S. 2006. Characterization of different strains of common carp (Cyprinus carpio L.) (Cyprinidae, Cypriniformes) in Bangladesh using microsatellite DNA markers. Genetics and Molecular Biology Vol. 29(4): 626-633.
[32]. Thai, B.T., Burridge, C.P., dan Austin, C.M. 2007. Genetic diversity of common carp (Cyprinus carpio L.) in Vietnam using four microsatellite loci. Aquaculture, 269: 174-186.
[33]. Ardiwinata, R.O., 1981. Cultivation of Common Carp. Sumur Bandung, Bandung.
[34]. Sekino, M., Hara, M., and Taniguchi, N., Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese Flounder Paralichthys olivaceus. Aquaculture. Vol.213: 101–122.