IJARP

International Journal of Advanced Research and Publications (2456-9992)

High Quality Publications & World Wide Indexing!

Drone-Based DSM For Multiscale Geometrical Characteristics Of Ephemeral Gullies.

Volume 3 - Issue 7, July 2019 Edition
[Download Full Paper]

Author(s)
Jean A. Doumit, Souhail F. Awad
Keywords
drone, ephemeral gully, CTI, DSM, Multi-scale.
Abstract
The advance uses of drones in geosciences by producing very high spatial resolution Digital Surface Models (DSMs) and Digital Ortho Models (DOM), at various flight heights, led to different digital models scales. Relief plays an important role in the formation of Ephemeral Gullies (EG), this study focuses on the prediction of multiscale EG location using the compound topographic index (CTI) and analyzed their geometrical characteristics as length, depth and volume of the three different spatial resolutions DSM processed from different drone flights height. Ephemeral Gully extracted from the three flight heights of 120, 240 and 360 meters were compared with each other to understand the effect of generalization at different scales. The results highlight the presence of two scales, small scale ephemeral gully expressed by the flight height 240 and 360 m and a much smaller scale in the level of micro relief of the flight height 120 m.
References
[1]. Casalí, J., Loizu, J., Campo, M. A., De Santisteban, L. M., and Álvarez-Mozos, J. 2006. Accuracy of methods for field assessment of rill and ephemeral gully erosion, Catena, 67. pp. 128–138.
[2]. Casasnovas, J.A., Ramos, M.C., Ribes-Dasi, M. 2002. Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 105. pp.125–140. DOI: 10.1016/S0016-7061(01)00096-9.
[3]. Castillo, C., Pérez, R., James, M.R., Quinton, N.J., Taguas, E.V., Gómez, A. 2012. Comparing the accuracy of several field methods for measuring gully erosion. Soil Science Society of America Journal 76. pp.1319–1332.
[4]. Chaubey, I., Cotter, A. S., Costello, T. A. and Soerens, T. 2005. Effect of DEM data resolution on SWAT output uncertainty. Hydrol. Proc. 19(3). pp. 621-628.
[5]. Daggupati, P., Douglas-Mankin, K. R., Sheshukov, A.Y. 2013. Predicting ephemeral gully location and length using topographic index models. Transactions of the ASABE, American Society of Agricultural and Biological Engineers Vol. 56(4). pp. 1427-1440. ISSN 2151-0032.
[6]. Desmet, P. J. J., Poesen, J. Govers, G. and Vandaele, K. 1999. Importance of slope gradient and contributing area for optimal prediction of the initiation and trajectory of ephemeral gullies. Catena 37(3-4) pp. 377-392.
[7]. Doumit, J.A. 2018. Multiscale Landforms Classification Based on UAV Datasets. Sustainability in Environment, Vol. 3, No. 2. doi:10.22158/se. v3n2p128. www.scholink.org/ojs/index.php/se
[8]. Doumit, J.A., Awad, S.F. 2019. DEM Spatial Resolution Impact On Hillslope Erosion and Deposition Modeling, an Application On Lebanese Watersheds. Sustainability in Environment, Vol. 4, No. 2, 2019. http://dx.doi.org/10.22158/se.v4n2p75.
[9]. Doumit, J.A., Kiselev, E.N. 2016. Structure from motion technology for macro-scale objects cartography// Breakthrough scientific research as the modern engine of sciences, St. Petersburg.: Publishers “Cult Inform Press”. pp 42-47.
[10]. Dubertret, L. and Wetzel, R. 1951. 1 / 50,000 Geological Map, Zahleh Sheet, Explanatory Note, Lebanese Republic, Min. public works, Beirut, Lebanon, 68p.
[11]. Hakim, B. 1985. Hydrological and hydrochemical research on some Mediterranean karsts Lebanon, Syria, and Morocco. Publications of the Lebanese University, Beirut Lebanon. 701 p., 6 maps.
[12]. Hengl, T., Evans, I.S.2009. Mathematical and digital models of the land surface. In: Hengl T, Reuter, H.I (Eds.), Geomorphometry — Concepts, Software, Applications. Developments in Soil Science, vol. 33. Elsevier, Amsterdam, pp. 31–63.
[13]. Holmes, K. W., Chadwick, O. A., and Kyriakidis. P. C. 2000. Error in a USGS 30-meter digital elevation model and its impact on terrain modeling. J. Hydrol. 233(1). pp.154-173.
[14]. James, M.R., Robson, S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geosciences applications. Journal of Geophysical Research 117. pp1–17. DOI: 10.1029/2011JF002289.
[15]. MacMillan, R.A., Shary, P.A. 2009. Landforms and landform elements in geomorphometry. In: Hengl, T., Reuter, H.I. (Eds.), Geomorphometry—Concepts, Software, Applications. Developments in Soil Science, vol. 33. Elsevier, Amsterdam, pp. 227–254.
[16]. Momm, H. G., Bingner, R. L., Wells, R. and Dabney, S. D. S. 2011.Analysis of topographic attributes for identification of ephemeral gully channel initiation in agricultural watersheds. ASABE Paper No. 1111250. St. Joseph, Mich.: ASABE.
[17]. Montgomery, D.R., Dietrich, W.E. 1988. Where do channels begin? Nature 336. pp. 232-234.
[18]. Moore, I. D., Burch, G. J. and Mackenzie, D. H. 1988. Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Trans. ASAE 31(4). pp. 1098-1107.
[19]. Nachtergaele, J., Poesen, J. 1999. Assessment of soil losses by ephemeral gully erosion using high-altitude (stereo) aerial photographs. Earth Surface Processes and Landform 24. pp. 693–706. DOI: 10.1002/(SICI)1096-9837(199908)24:8<693: AID-ESP992>3.0.CO;2-7.
[20]. Nachtergaele, J., Poesen, J. 1999. Assessment of soil losses by ephemeral gully erosion using high-altitude (stereo) aerial photographs. Earth Surf. Proc. Landforms 24(8). pp. 693-706.
[21]. Parker, C., Thorne, C. Bingner, R. Wells, R. and Wilcox, D. 2007. Automated mapping of potential for ephemeral gully formation in agricultural watersheds laboratory. Publication No. 56. Oxford, Miss.: USDA-ARS National Sedimentation Laboratory.
[22]. Parkner, T., Page, M.J., Marutami, T., Trustrum, N.A. 2006. Development and controlling factors of gullies and gully complexes. East coast, New Zealand. Earth Surface Processes and Landforms 31. pp. 187–199. DOI: 10.1002/esp.1321.
[23]. Patton, P.C., Schumm, S.A. 1975. Gully Erosion, Northwestern Colorado: a threshold phenomenon. Geology 3. pp. 88–90. https://doi.org/10.1130/0091-7613(1975)3<88: GENCAT>2.0.CO;2.
[24]. Ries, J.B., Marzolff, I. 2003. Monitoring of gully erosion in the Central Ebro Basin by largescale aerial photography was taken from a remotely controlled blimp. Catena 50. pp. 309–328. https://doi.org/10.1016/S0341-8162(02)00133-9
[25]. Thorne, C. R., Grissenger, E. H. and Murphey, J. B. 1984. Field Study of Ephemeral Cropland Gullies in Northern Mississippi. Paper presented at the 1984 Winter Meeting of the American Society of Agricultural Engineers.
[26]. Thorne, C. R., Zevenbergen, L. W., Grissenger, E. H. and Murphey, J. B.1986. Ephemeral Gullies as Sources of Sediment. Proceedings of the Fourth Federal Inter-Agency Sedimentation Conference, 3. pp 152 – 161.
[27]. Thorne, C.R., Zevenbergen, L.W., Grissinger, E.H., Murphey, J.B. 1986. Ephemeral gullies as sources of sediment. Proc. Fourth Federal Interagency Sedimentation Conference, Las Vegas, Nevada, 1(3). pp.152-161.
[28]. Traboulsi, M. 2010. La pluviometrie moyenne annuelle au Liban : interpolation et cartographie automatique, Journal scientifique Libanais, Conseil national de la recherche scientifique, Volume 11, No 2, pp. 11-25.
[29]. Turner, D., Lucieer, A., Watson, C. 2012. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sensing 4. pp.1392–1410. DOI: 10.3390/rs4051392.
[30]. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179. pp 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021.
[31]. Zevenbergen, L. W. 1989. Modeling Erosion Using Terrain Analysis. A thesis presented for the degree of Doctors of Philosophy in the University of London.
[32]. Zevenbergen, L. W., Thorne, C. R. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12. pp. 47-56.