IJARP

International Journal of Advanced Research and Publications (2456-9992)

High Quality Publications & World Wide Indexing!

Effect Of Therapeutic Lithium Carbonate Doses On Rat Brain Content Of Mood Regulating Neurotransmitters

Volume 1 - Issue 5, November 2017 Edition
[Download Full Paper]

Author(s)
Abdel-Hamid, NM, El-Shaer, SS , Gad, A
Keywords
Lithium carbonate; Brain tissue; Bipolar Disorders; Neuroprotective; Neurotransmitters; Amino acids; Dopamine; Histamine; Magnesium, Calcium.
Abstract
The anti-depressant value of lithium on rat brain tissue was studied at different treatment periods to explore its impact on brain neurotransmitters related to mood disorders (dopamine and histamine) ,precursors with further highlighting on minerals implicated in their synthesis (magnesium and calcium). We examined a therapeutic dose (75 mg/kg/d) on four groups of rats, 6/each, grouped according to duration into, control group; given saline (group 1), acute study group; given single dose, left for 2 hours (group 2), sub-acute study group; given a dose each 3 days for 2 weeks (group 3) and a chronic study group; given a dose each 3 days for a month (group 4). Brain content of dopamine and histamine was significantly decreased on acute treatment, but increased for dopamine and decreased for histamine after 2 weeks while it flipped for each of them after one month of administration. Gama aminobutyrate (GABA), glycine and histidine were significantly decreased after each period of treatment while phenyl alanine was significantly decreased only after a month of treatment. These changes occurred with increased magnesium and decreased calcium brain content on both acute and sub-acute treatment. Brain content of both of them was decreased on chronic treatment. These actions reveal that lithium has a remarkable effect on brain neuronal function which probably postulates an interesting impact of lithium treatment in shifting amino acids and needed minerals in direction of improving the mood, through neurotransmission homeostasis. List of abbreviations: 5HT: serotonin; AA: arachidonic acid; Ach: acetylcholine; AD: Alzheimer disease; BD: bipolar disorder; BDNF: brain-derived neurotrophic factor; cAMP: cyclic adenosine monophosphate; Cdk5: cyclin-dependent kinase 5; ER: endoplasmic reticulum; GABA: gamma-Aminobutyric acid; GSK3: Glycogen synthase kinase 3; HDAC: Histone deacetylase; IL-1β: Interleukin 1 beta; IL-6: Interleukin 6; IP3: inositol 1, 4, 5-trisphosphate; NMDA: N-methyl-D-aspartic acid; PAI-1: plasminogen activatorinhibitor-1; PD: Parkinson's disease; SNc: substantianigra pars compacta; TBARS: Thiobarbituric acid reactive substances; TNF-α: Tumor necrosis factor alpha.
References
[1] M. Ahmad, Y. Elnakady, M. Farooq, M. Wadaan, Lithium induced toxicity in rats: blood serum chemistry, antioxidative enzymes in red blood cells and histopathological studies, Biological and Pharmaceutical Bulletin, 34 (2011) 272-277.

[2] A. Albayrak, Z. Halici, B. Polat, E. Karakus, E. Cadirci, Y. Bayir, S. Kunak, S.S. Karcioglu, S. Yigit, D. Unal, Protective effects of lithium: a new look at an old drug with potential antioxidative and anti-inflammatory effects in an animal model of sepsis, International immunopharmacology, 16 (2013) 35-40.

[3] U. Banerjee, A. Dasgupta, J.K. Rout, O.P. Singh, Effects of lithium therapy on Na+–K+-ATPase activity and lipid peroxidation in bipolar disorder, Progress in Neuro-Psychopharmacology and Biological Psychiatry, 37 (2012) 56-61.

[4] M. Bauer, M. Adli, R. Ricken, E. Severus, M. Pilhatsch, Role of lithium augmentation in the management of major depressive disorder, CNS drugs, 28 (2014) 331-342.

[5] K. Scheuch, M. Höltje, H. Budde, M. Lautenschlager, A. Heinz, G. Ahnert-Hilger, J. Priller, Lithium modulates tryptophan hydroxylase 2 gene expression and serotonin release in primary cultures of serotonergic raphe neurons, Brain research, 1307 (2010) 14-21.

[6] A. Camins, E. Verdaguer, F. Junyent, M. Yeste‐Velasco, C. Pelegrí, J. Vilaplana, M. Pallás, Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium, CNS neuroscience & therapeutics, 15 (2009) 333-344.

[7] A. Ozkul, A. Sair, A. Akyol, C. Yenisey, T. Dost, C. Tataroglu, Effects of Lithium and Lamotrigine on Oxidative–Nitrosative Stress and Spatial Learning Deficit After Global Cerebral Ischemia, Neurochemical research, 39 (2014) 853-861.

[8] G. Chen, M.I. Masana, H.K. Manji, Lithium regulates PKC‐mediated intracellular cross‐talk and gene expression in the CNS in vivo, Bipolar disorders, 2 (2000) 217-236.

[9] R.S. Jope, Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes, Trends in pharmacological sciences, 24 (2003) 441-443.

[10] H.R. Pilcher, Drug research: the ups and downs of lithium, Nature, 425 (2003) 118-120.

[11] C.J. Phiel, C.A. Wilson, V.M.-Y. Lee, P.S. Klein, GSK-3α regulates production of Alzheimer's disease amyloid-β peptides, Nature, 423 (2003) 435-439.

[12] D.M. Chuang, R.W. Chen, E. Chalecka‐Franaszek, M. Ren, R. Hashimoto, V. Senatorov, H. Kanai, C. Hough, T. Hiroi, P. Leeds, Neuroprotective effects of lithium in cultured cells and animal models of diseases, Bipolar disorders, 4 (2002) 129-136.

[13] R.-W. Chen, D.-M. Chuang, Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression A prominent role in neuroprotection against excitotoxicity, Journal of Biological Chemistry, 274 (1999) 6039-6042.

[14] J.K. Rybakowski, A. Suwalska, Excellent lithium responders have normal cognitive functions and plasma BDNF levels, International Journal of Neuropsychopharmacology, 13 (2010) 617-622.

[15] R. Machado‐Vieira, H.K. Manji, C.A. Zarate Jr, The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis, Bipolar disorders, 11 (2009) 92-109.

[16] J. Makoukji, M. Belle, D. Meffre, R. Stassart, J. Grenier, R. Fledrich, C. Fonte, J. Branchu, M. Goulard, C. de Waele, Lithium enhances remyelination of peripheral nerves, Proceedings of the National Academy of Sciences, 109 (2012) 3973-3978.

[17] S. Guloksuz, K. Altinbas, E.A. Cetin, G. Kenis, S.B. Gazioglu, G. Deniz, E.T. Oral, J. van Os, Evidence for an association between tumor necrosis factor-alpha levels and lithium response, Journal of affective disorders, 143 (2012) 148-152.

[18] E.M. Knijff, M. Nadine Breunis, R.W. Kupka, H.J. De Wit, C. Ruwhof, G.W. Akkerhuis, W.A. Nolen, H.A. Drexhage, An imbalance in the production of IL‐1β and IL‐6 by monocytes of bipolar patients: restoration by lithium treatment, Bipolar disorders, 9 (2007) 743-753.

[19] H. Einat, P. Yuan, T.D. Gould, J. Li, J. Du, L. Zhang, H.K. Manji, G. Chen, The role of the extracellular signal-regulated kinase signaling pathway in mood modulation, Journal of Neuroscience, 23 (2003) 7311-7316.

[20] T.D. Gould, G. Chen, H.K. Manji, Mood stabilizer psychopharmacology, Clinical neuroscience research, 2 (2002) 193-212.

[21] R.S. Jope, A bimodal model of the mechanism of action of lithium, Molecular psychiatry, 4 (1999) 21-25.

[22] S.I. Rapoport, F. Bosetti, Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder?, Archives of General Psychiatry, 59 (2002) 592-596.

[23] R. Hashimoto, N. Takei, K. Shimazu, L. Christ, B. Lu, D.-M. Chuang, Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity, Neuropharmacology, 43 (2002) 1173-1179.

[24] M.-H. Liang, J.R. Wendland, D.-M. Chuang, Lithium inhibits Smad3/4 transactivation via increased CREB activity induced by enhanced PKA and AKT signaling, Molecular and Cellular Neuroscience, 37 (2008) 440-453.

[25] T.D. Gould, G. Chen, H.K. Manji, In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3, Neuropsychopharmacology, 29 (2004) 32.

[26] D.J. Klionsky, K. Abdelmohsen, A. Abe, M.J. Abedin, H. Abeliovich, A. Acevedo Arozena, H. Adachi, C.M. Adams, P.D. Adams, K. Adeli, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, 12 (2016) 1-222.

[27] M. Banasr, G. Chowdhury, R. Terwilliger, S. Newton, R. Duman, K. Behar, G. Sanacora, Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole, Molecular psychiatry, 15 (2010) 501-511.

[28] A. Serretti, R. Lilli, L. Mandelli, C. Lorenzi, E. Smeraldi, Serotonin transporter gene associated with lithium prophylaxis in mood disorders, The pharmacogenomics journal, 1 (2001) 71-77.

[29] T. Sakai, A. Oshima, Y. Nozaki, I. Ida, C. Haga, H. Akiyama, Y. Nakazato, M. Mikuni, Changes in density of calcium‐binding‐protein‐immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder, Neuropathology, 28 (2008) 143-150.

[30] M.H. Karimfar, K. Tabrizian, K. Azami, A. Hosseini-Sharifabad, A. Hoseini, M. Pourghorban, M. Aghsami, S. Gholizadeh, M. Abdollahi, A. Roghani, Time course effects of lithium administration on spatial memory acquisition and cholinergic marker expression in rats, DARU Journal of Pharmaceutical Sciences, 17 (2015) 113-123.

[31] I. Morales, L. Guzman-Martinez, C. Cerda-Troncoso, G.A. Farias, R.B. Maccioni, Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches, Front Cell Neurosci, 8 (2014) 112.

[32] N.B. Farber, J.W. Newcomer, J.W. Olney, The glutamate synapse in neuropsychiatric disorders. Focus on schizophrenia and Alzheimer's disease, Prog Brain Res, 116 (1998) 421-437.

[33] Y.V. Tcherkas, L.A. Kartsova, I.N. Krasnova, Analysis of amino acids in human serum by isocratic reversed-phase high-performance liquid chromatography with electrochemical detection, Journal of Chromatography A, 913 (2001) 303-308.

[34] T. Sumiyoshi, A.E. Anil, D. Jin, K. Jayathilake, M. Lee, H.Y. Meltzer, Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms, Int J Neuropsychopharmacol, 7 (2004) 1-8.

[35] K. Hashimoto, A. Sawa, M. Iyo, Increased levels of glutamate in brains from patients with mood disorders, Biol Psychiatry, 62 (2007) 1310-1316.

[36] O.Y. Nagasawa M, Kurata K, Otsuka T, Yoshida J, Tomonaga S, Furuse M. Furuse,, Hypothesis with abnormal amino acid metabolism in depression and stress vulnerability in Wistar Kyoto rats, Amino Acids 2012 (2012).

[37] Z.M.a.A.-A. Abdallah, F.T. , Some biochemical studies of diazepam (valium) on rabbit brain homogenate, Arab J. Med, 8 (1982) 131-139.

[38] M. Schlumpf, W. Lichtensteiger, H. Langemann, P.G. Waser, F. Hefti, A fluorometric micromethod for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amounts of brain tissue, Biochemical pharmacology, 23 (1974) 2437-2446.

[39] J. Parratt, G. West, Release of 5‐hydroxytryptamine and histamine from tissues of the rat, The Journal of physiology, 137 (1957) 179-192.

[40] M.M. Parker, F.L. Humoller, D.J. Mahler, Determination of copper and zinc in biological material, Clinical chemistry, 13 (1967) 40-48.

[41] N. Ozaki, D.M. Chuang, Lithium Increases Transcription Factor Binding to AP‐1 and Cyclic AMP‐Responsive Element in Cultured Neurons and Rat Brain, Journal of neurochemistry, 69 (1997) 2336-2344.

[42] T. Baptista, L. Teneud, Q. Contreras, J. Burguera, M. Burguera, L. Hernandez, Effects of acute and chronic lithium treatment on amphetamine-induced dopamine increase in the nucleus accumbens and prefrontal cortex in rats as studied by microdialysis, Journal of Neural Transmission/General Section JNT, 94 (1993) 75-89.

[43] M. Dziedzicka-Wasylewska, M. Maćkowiak, K. Fijaτ, K. Wędzony, Adaptive changes in the rat dopaminergic transmission following repeated lithium administration, Journal of Neural Transmission, 103 (1996) 765-776.

[44] J.-M. Aubry, M. Schwald, E. Ballmann, F. Karege, Early effects of mood stabilizers on the Akt/GSK-3β signaling pathway and on cell survival and proliferation, Psychopharmacology, 205 (2009) 419-429.

[45] S. Nuutinen, P. Panula, Histamine in neurotransmission and brain diseases, in: Histamine in Inflammation, Springer, 2010, pp. 95-107.

[46] X. Yang, C. Liu, J. Zhang, H. Han, X. Wang, Z. Liu, Y. Xu, Association of histamine N-methyltransferase Thr105Ile polymorphism with Parkinson’s disease and schizophrenia in Han Chinese: a case-control study, PloS one, 10 (2015) e0119692.

[47] M. Vizuete, M. Merino, J. Venero, M. Santiago, J. Cano, A. Machado, Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra, Journal of neurochemistry, 75 (2000) 540-552.

[48] P. Langlais, S. Zhang, G. Weilersbacher, L. Hough, K. Barke, Histamine‐mediated neuronal death in a rat model of Wernicke's encephalopathy, Journal of neuroscience research, 38 (1994) 565-574.

[49] P. Nowak, A. Bortel, J. Dabrowska, I. Biedka, G. Slomian, W. Roczniak, R.M. Kostrzewa, R. Brus, Histamine H 3 receptor ligands modulate L-dopa-evoked behavioral responses and L-dopa-derived extracellular dopamine in dopamine-denervated rat striatum, Neurotoxicity research, 13 (2008) 231-240.

[50] L.H. Price, D.S. Charney, P.L. Delgado, G.R. Heninger, Lithium and serotonin function: implications for the serotonin hypothesis of depression, Psychopharmacology, 100 (1990) 3-12.

[51] N. Crespo-Biel, A. Camins, M. Pallas, A. Canudas, Evidence of calpain/cdk5 pathway inhibition by lithium in 3-nitropropionic acid toxicity in vivo and in vitro, Neuropharmacology, 56 (2009) 422-428.

[52] R. Bernasconi, The GABA hypothesis of affective illness: influence of clinically effective antimanic drugs on GABA turnover, in: Basic mechanisms in the action of lithium, Excerpta Medica Amsterdam, 1982, pp. 183-192.

[53] L. Ferrie, A.H. Young, R. McQuade, Effect of chronic lithium and withdrawal from chronic lithium on presynaptic dopamine function in the rat, J Psychopharmacol, 19 (2005) 229-234.

[54] J.R. Moffett, B. Ross, P. Arun, C.N. Madhavarao, A.M. Namboodiri, N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology, Prog Neurobiol, 81 (2007) 89-131.

[55] M. Yudkoff, Y. Daikhin, T.M. Melo, I. Nissim, U. Sonnewald, The ketogenic diet and brain metabolism of amino acids: relationship to the anticonvulsant effect, Annu Rev Nutr, 27 (2007) 415-430.

[56] G. Chen, P.X. Yuan, Y.M. Jiang, L.D. Huang, H.K. Manji, Lithium increases tyrosine hydroxylase levels both in vivo and in vitro, J Neurochem, 70 (1998) 1768-1771.

[57] M. Sparapani, M. Virgili, F. Ortali, A. Contestabile, Effects of chronic lithium treatment on ornithine decarboxylase induction and excitotoxic neuropathology in the rat, Brain Res, 765 (1997) 164-168.

[58] E. Severus, M.J. Taylor, C. Sauer, A. Pfennig, P. Ritter, M. Bauer, J.R. Geddes, Lithium for prevention of mood episodes in bipolar disorders: systematic review and meta-analysis, Int J Bipolar Disord, 2 (2014) 15.

[59] J. Kasuya, G. Kaas, T. Kitamoto, Effects of lithium chloride on the gene expression profiles in Drosophila heads, Neurosci Res, 64 (2009) 413-420.

[60] C.T. Chiu, Z. Wang, J.G. Hunsberger, D.M. Chuang, Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder, Pharmacol Rev, 65 (2013) 105-142.

[61] T. Dudev, C. Lim, Competition between Li+ and Mg2+ in metalloproteins. Implications for lithium therapy, Journal of the American Chemical Society, 133 (2011) 9506-9515.

[62] H. Gonullu, E. Gonullu, S. Karadas, M. Arslan, O. Kalemci, A. Aycan, R. Sayin, H. Demir, The levels of trace elements and heavy metals in patients with acute migraine headache, J Pak Med Assoc, 65 (2015) 694-697.

[63] U. Gröber, J. Schmidt, K. Kisters, Magnesium in prevention and therapy, Nutrients, 7 (2015) 8199-8226.

[64] S. Gupta, A. Manhas, V. Gupta, R. Bhatt, Serum magnesium levels in idiopathic epilepsy, The Journal of the Association of Physicians of India, 42 (1994) 456-457.

[65] T. Yary, S.M. Lehto, T. Tolmunen, T.-P. Tuomainen, J. Kauhanen, S. Voutilainen, A. Ruusunen, Dietary magnesium intake and the incidence of depression: A 20-year follow-up study, Journal of affective disorders, 193 (2016) 94-98.

[66] A.K. Baltaci, F. Sunar, R. Mogulkoc, M. Acar, H. Toy, The effect of zinc deficiency and zinc supplementation on element levels in the bone tissue of ovariectomized rats: histopathologic changes, Archives of physiology and biochemistry, 120 (2014) 80-85.

[67] C.d.P. Eduardo, A. Simões, P.M. de Freitas, V.E. Arana‐Chavez, J. Nicolau, V. Gentil, Dentin decalcification during lithium treatment: case report, Special Care in Dentistry, 33 (2013) 91-95.

[68] K. Szydlowska, M. Tymianski, Calcium, ischemia and excitotoxicity, Cell calcium, 47 (2010) 122-129.

[69] M.J. Berridge, C.P. Downes, M.R. Hanley, Neural and developmental actions of lithium: a unifying hypothesis, Cell, 59 (1989) 411-419.

[70] N. Sourial-Bassillious, P.-A. Rydelius, A. Aperia, O. Aizman, Glutamate-mediated calcium signaling: a potential target for lithium action, Neuroscience, 161 (2009) 1126-1134.

[71] C.-T. Chiu, D.-M. Chuang, Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders, Pharmacology & therapeutics, 128 (2010) 281-304.

[72] A. Harwood, Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited, in, Nature Publishing Group, 2005.