Influence Of Digests (Fertilizers) On Certain Parameters Agronomic And Biochemical Of Beans (Phaseolus Vulgaris l.) In Faranah (Republic Of Guinea)
Volume 3 - Issue 11, November 2019 Edition
[Download Full Paper]
Author(s)
BARRY Ibrahima, BARRY Alpha Oumar Sadio, KEITA Mamby, DIALLO Sara Bailo, Ansoumane SAKOUVOGUI
Keywords
Influence, digestate, agronomic, biochemical, bean.
Abstract
The results of this study, the vegetative cycle of the bean (Phaseolus vulgaris L.) ranges from 60 to 65 days, the average height of the plants (45 cm). The digestate of Dinguiraye as a fertilizer on the number of pods by plant (23.45), followed respectively by Dabola and Faranah is 22.30 and 16.60. The number of control pods is 17.25 which is close to the average of the four values of 19.90. Faranah (3.65), Dinguiraye (3.55), Dabola (3.40) and control (2.75), with an average of 3.34 seeds per pod. Dabola digestate provided the largest weight of 1000 seeds compared to Faranah digestate at 546 g and 382 g, respectively, and the other digests gave intermediate values, with an average of 423.5. The high yield was provided by the Dinguiraye digestate (2.01 t/ha). That of Dabola (1.98 t/ha). The control gave a lower yield of 1.43 t/ha. Moisture content in the seeds grown according to the origin of the fertilizers (digests) have a value of 7.77% for Dalaba to 8.38% for Dinguiraye, with an average of 8,09%. The dry matter levels are relatively equal for an average of 91.92%. Protein levels ranged from 12.80% for the control to 15.40% for Dinguiraye, the overall average is 14.32%. The fat and mineral levels are respectively 2.91% to 3.70% and 3.43% to 3.85%, with the following materials: fat (3.12%) and mineral matter (3%). 65%). The crude fiber levels are relatively close, with an average of 16.30%. This experimental study on the use of different digestive states (Faranah, Dabola and Dinguiraye) is like a soil amendment, influenced by some agronomic and biochemical parameters of the bean (Phaseolus vulgaris L.).
References
[1] GEPTS P., (1990). Biochimical evidence bearing on the domestication of Phaseolus Fabaceae) beans. Econ. Bot. 44 (suppl.): 38 - 38.
[2] CNSA/MARNDR. (2012). Evaluation de la campagne agricole de Printemps 2012. 78 p.
[3] GRAHAM P. H. (1980). Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris, in Elsevier scientific publishing company Netherland. 55pages
[4] RALAIDOVY H. V. (2004 ). Contribution à l’amélioration de la production de légumineuses dans la région de Beforona. Cas haricot sec, du haricot vert et du petit pois. Mémoire de fin d’étude. Ecole Supérieure des Sciences Agronomiques d’Antananarivo, 126p
[5] Daniel CHERY, (2016). Essai d’adaptation de 9 lignées de haricot noir (Phaseolus vulgaris L.) riches en fer à Lalouère, 4ème section communale de St-Marc Université d’Etat d’Haïti, 48p.
[6] Missihoun et al., J. Appl. Biosci. (2017) Diversité variétale et gestion paysanne des haricots cultivés du genre Phaseolus cultivés au Centre et au Sud Bénin (en Afrique de l’Ouest), Journal of Applied Biosciences 118: 11817-11828.
[7] Portail de la botanique, Haricot (2018), La version du 8 mai 2008 23p.
[8] K. Möller. (2015). Effects on anaerobic digestion on soil carbon and nitrogen turnover, N emissions and soil biological activity. A review. Agron.Sustain.Dev 35 : 1021-1041.
[9] D. Cavalli, M. Corti, D. Baronchelli, L. Belchini, P. Marino Gallina. (2017). CO2 emissions and mineral nitrogen dynamics following application to soil of undigested liquid cattle manure and digestates. Geoderma 308 (2017). 26-35.
[10] C. Couturier, Solagro. (2014). La méthanisation rurale, outil des transitions énergétique et agroécologique et K. Möller. (2015). Effects on anaerobic digestion on soil carbon and nitrogen turnover, N emissions and soil biological activity. A review. Agron.Sustain.Dev 35 : 1021- 1041.
[11] Odlare M, Pell M, Svensson K (2008) Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manag 28:1246 -1253.
[12] Wentzel S, Schmidt R, Piepho HP, Semmler-Busch U, Joergensen RG, (2015). Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming. Applied Soil Ecology 96, 99 -107.
[13] Groupe Energies Renouvelables, Environnement et Solidarités (2018). La méthanisation en Provence Alpes côte d’Azur, 63 p.
[14] Ministère de l’Agriculture, de l’Elevage, de l’Environnement et des Eaux et Forêts (2015). Politique Nationale de Développement Agricole, 59p.
[15] Ibrahima BARRY, Diawadou DIALLO, Mamby KEITA, Sara Baïlo DIALLO, Ansoumane SAKOUVOGUI (2019), Agronomic valorization of digestates from anaerobic digestion from cow dung in the Faranah Administrative Region (Republic of Guinea), Vol-5 Issue-3, IJARIIE-ISSN(O)-2395-4396.
[16] DUPONT F., GUIGNARD J.L., (1989). Haricot nain (Bulletin des variétés). Edition Mason. Collection: Abrégés pharma Paris. 510p.
[17] FAO. (2006). Glossaire de la gestion intégrée des éléments nutritifs (pdf). 47p.
[18] LECOMTE B. (1997). Etude de développement embryonnaire in vivo et in vitro dans le genre Phaseolus L. Thèse de doctorat Sciences Agronomiques, Belgique 186p.
[19] Poitou-Charentes, Produits du terroir, Albin Michel, (ISBN 2-226-06974-7).
[20] Centre pour le développement de l’horticulture “CDHâ€. (2012). La culture du haricot nain au Dakar, Sénégal.
[21] GOUST J. (2003). Le haricot, L'encyclopédie du potager. Actes Sud, Arles (ISBN 2-7427-4615-3). 112p.
[22] Production des haricots secs, ministère de l'Agriculture d'Afrique du Sud